High-density polyethylene (HDPE)-based nanocomposites incorporating three different types of graphene nanoplatelets (GnPs) were fabricated to investigate the size effects of GnPs in terms of both lateral size and thickness on the morphological, thermal, electrical, and mechanical properties. The results show that the inclusion of GnPs enhance the thermal, electrical, and mechanical properties of HDPE-based nanocomposites regardless of GnP size. Nevertheless, the most significant enhancement of the thermal and electrical conductivities and the lowest electrical percolation threshold were achieved with GnPs of a larger lateral size. This could have been attributed to the fact that the GnPs of larger lateral size exhibited a better dispersion in HDPE and formed conductive pathways easily observable in scanning electron microscope (SEM) images. Our results show that the lateral size of GnPs was a more regulating factor for the above-mentioned nanocomposite properties compared to their thickness. For a given lateral size, thinner GnPs showed significantly higher electrical conductivity and a lower percolation threshold than thicker ones. On the other hand, in terms of thermal conductivity, a remarkable amount of enhancement was observed only above a certain filler concentration. The results demonstrate that GnPs with smaller lateral size and larger thickness lead to lower enhancement of the samples’ mechanical properties due to poorer dispersion compared to the others. In addition, the size of the GnPs had no considerable effect on the melting and crystallization properties of the HDPE/GnP nanocomposites.
Hysteresis loops exhibited by the thermophysical properties of VO
2
thin films deposited on either a sapphire or silicon substrate have been experimentally measured using a high frequency photothermal radiometry technique. This is achieved by directly measuring the thermal diffusivity and thermal effusivity of the VO
2
films during their heating and cooling across their phase transitions, along with the film-substrate interface thermal boundary resistance. These thermal properties are then used to determine the thermal conductivity and volumetric heat capacity of the VO
2
films. A 2.5 enhancement of the VO
2
thermal conductivity is observed during the heating process, while its volumetric heat capacity does not show major changes. This sizeable thermal conductivity variation is used to model the operation of a conductive thermal diode, which exhibits a rectification factor about 30% for small temperature differences (≈70 °C) on its terminals. The obtained results grasp thus new insights on the control of heat currents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.