Abstract. On 28 February 2018, 57 mm of precipitation associated with a warm conveyor belt (WCB) fell within 21 h over South Korea. To investigate how the large-scale circulation influenced the microphysics of this intense precipitation event, we used radar measurements, snowflake photographs and radiosounding data from the International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic Winter Games (ICE-POP 2018). The WCB was identified with trajectories computed with analysis wind fields from the Integrated Forecast System global atmospheric model. The WCB was collocated with a zone of enhanced wind speed of up to 45 m s−1 at 6500 m a.s.l., as measured by a radiosonde and a Doppler radar. Supercooled liquid water (SLW) with concentrations exceeding 0.2 g kg−1 was produced during the rapid ascent within the WCB. During the most intense precipitation period, vertical profiles of polarimetric radar variables show a peak and subsequent decrease in differential reflectivity as aggregation starts. Below the peak in differential reflectivity, the specific differential phase shift continues to increase, indicating early riming of oblate crystals and secondary ice generation. We hypothesise that the SLW produced in the WCB led to intense riming. Moreover, embedded updraughts in the WCB and turbulence at its lower boundary enhanced aggregation by increasing the probability of collisions between particles. This suggests that both aggregation and riming occurred prominently in this WCB. This case study shows how the large-scale atmospheric flow of a WCB provides ideal conditions for rapid precipitation growth involving SLW production, riming and aggregation. Future microphysical studies should also investigate the synoptic conditions to understand how observed processes in clouds are related to large-scale circulation.
The current assessment of the Antarctic surface mass balance mostly relies on reanalysis products or climate model simulations. However, little is known about the ability of models to reliably represent the microphysical processes governing the precipitation. This study makes use of recent ground‐based precipitation measurements at Dumont d'Urville station in Adélie Land to evaluate the representation of the precipitation microphysics in the Polar version of the Weather Research Forecast (Polar WRF) atmospheric model. During two summertime snowfall events, high‐resolution simulations are compared to measurements from an X‐band polarimetric radar and from a Multi‐Angle Snowflake Camera (MASC). A radar simulator and a “MASC” simulator in Polar WRF make it possible to compare similar observed and simulated variables. Radiosoundings and surface‐meteorological observations were used to assess the representation of the regional dynamics in the model. Five different microphysical parameterizations are tested. The simulated temperature, wind, and humidity fields are in good agreement with the observations. However, the amount of simulated surface precipitation shows large discrepancies with respect to observations, and it strongly differs between the simulations themselves, evidencing the critical role of the microphysics. The inspection of vertical profiles of reflectivity and mixing ratios revealed that the representation of the sublimation process by the low‐level dry katabatic winds strongly influences the actual amount of precipitation at the ground surface. By comparing the simulated radar signal as well as MASC and model particle size distributions, it is also possible to identify the microphysical processes involved and to pinpoint shortcomings within the tested parameterizations.
Firn is found above the equilibrium line and consists of interannual snowpack, the density of which increases by compaction through burial but also due to percolation and refreezing of surface meltwater (Braithwaite et al., 1994;Brown et al., 2011;Pfeffer & Humphrey, 1998). Firn has the potential to trap and store meltwater within its pore space, thereby buffering the GrIS contribution to sea level rise (Harper et al., 2012;Pfeffer et al., 1991).In the percolation zone, where surface melt rates are substantial but usually do not deplete the seasonal snow completely, the fate of meltwater varies mainly with annual snowfall. Where snowfall rates are high (∼1,000 ± 400 mm w.e. per year), mostly in southeast and south Greenland, liquid water percolates to a depth where it forms perennial firn aquifers (Forster et al., 2014;Miège et al., 2016;Miller et al., 2022). Conversely, in regions where accumulation rates are lower and which have recently experienced significant melting, ice slabs several meters thick can form-mostly along the west, north and northeast of the GrIS (MacFerrin et al., 2019;Miller et al., 2022). In these regions, increased meltwater percolation during several successive summers fused centimeters-scale ice lenses into increasingly contiguous ice layers tens of centimeters thick and eventually
Abstract. Precipitation falling over the coastal regions of Antarctica often experiences low-level sublimation within the dry katabatic layer. The amount of water that reaches the ground surface is thereby considerably reduced. This paper investigates the synoptic conditions and the atmospheric transport pathways of moisture that lead to either virga – when precipitation is completely sublimated – or actual surface precipitation events over coastal Adélie Land, East Antarctica. For this purpose, the study combines ground-based lidar and radar measurements at Dumont d'Urville station (DDU), Lagrangian back trajectories, Eulerian diagnostics of extratropical cyclones and fronts, and moisture source estimations. It is found that precipitating systems at DDU are associated with warm fronts of cyclones that are located to the west of Adélie Land. Virga – corresponding to 36 % of the hours with precipitation above DDU – and surface precipitation cases are associated with the same precipitating system but they correspond to different phases of the event. Virga cases more often precede surface precipitation. They sometimes follow surface precipitation in the warm sector of the cyclone's frontal system, when the associated cyclone has moved to the east of Adélie Land and the precipitation intensity has weakened. On their way to DDU, the air parcels that ultimately precipitate above the station experience a large-scale lifting across the warm front. The lifting generally occurs earlier in time and farther from the station for virga than for precipitation. It is further shown that the water contained in the snow falling above DDU during pre-precipitation virga has an oceanic origin farther away (about 30∘ more to the west) from Adélie Land than the one contained in the snow that precipitates down to the ground surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.