Current knowledge about the molecular mechanisms of NMDA receptor (NMDAR)-independent long-term potentiation (LTP) in the hippocampus and its function for memory formation in the behaving animal is limited. NMDAR-independent LTP in the CA1 region is thought to require activity of postsynaptic L-type voltage-dependent Ca2+channels (Cav1.x), but the underlying channel isoform remains unknown. We evaluated the function of the Cav1.2 L-type Ca2+channel for spatial learning, synaptic plasticity, and triggering of learning-associated biochemical processes using a mouse line with an inactivation of theCACNA1C(Cav1.2) gene in the hippocampus and neocortex (Cav1.2HCKO). This model shows (1) a selective loss of protein synthesis-dependent NMDAR-independent Schaffer collateral/CA1 late-phase LTP (L-LTP), (2) a severe impairment of hippocampus-dependent spatial memory, and (3) decreased activation of the mitogen-activated protein kinase (MAPK) pathway and reduced cAMP response element (CRE)-dependent transcription in CA1 pyramidal neurons. Our results provide strong evidence for a role of L-type Ca2+channel-dependent, NMDAR-independent hippocampal L-LTP in the formation of spatial memory in the behaving animal and for a function of the MAPK/CREB (CRE-binding protein) signaling cascade in linking Cav1.2 channel-mediated Ca2+influx to either process.
Our data indicate that cessation of electrical activity after peripheral lesion contributes to the regenerative response observed upon conditioning and might be necessary to promote regeneration after central nervous system injury.
In the hippocampal formation, Ca(v)1.2 (L-type) voltage-gated Ca(2+) channels mediate Ca(2+) signals that can trigger long-term alterations in synaptic efficacy underlying learning and memory. Immunocytochemical studies indicate that Ca(v)1.2 channels are localized mainly in the soma and proximal dendrites of hippocampal pyramidal neurons, but electrophysiological data suggest a broader distribution of these channels. To define the subcellular substrates underlying Ca(v)1.2 Ca(2+) signals, we analyzed the localization of Ca(v)1.2 in the hippocampal formation by using antibodies against the pore-forming alpha(1)-subunit of Ca(v)1.2 (alpha(1)1.2). By light microscopy, alpha(1)1.2-like immunoreactivity (alpha(1)1.2-IR) was detected in pyramidal cell soma and dendritic fields of areas CA1-CA3 and in granule cell soma and fibers in the dentate gyrus. At the electron microscopic level, alpha(1)1.2-IR was localized in dendrites, but also in axons, axon terminals, and glial processes in all hippocampal subfields. Plasmalemmal immunogold particles representing alpha(1)1.2-IR were more significant for small- than large-caliber dendrites and were largely associated with extrasynaptic regions in dendritic spines and axon terminals. These findings provide the first detailed ultrastructural analysis of Ca(v)1.2 localization in the brain and support functionally diverse roles of these channels in the hippocampal formation.
The simultaneous assessment of LGE and FDG uptake using a hybrid PET/MRI system is feasible. The established PET and MRI 'viability' parameter prior to revascularization therapy also predicts accurately the regional outcome of wall motion after AMI. In a small proportion of segments with discrepant FDG PET and LGE MRI findings, FDG uptake was a better predictor for functional recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.