Most current models of sequence evolution assume that all sites of a protein evolve under the same substitution process, characterized by a 20 x 20 substitution matrix. Here, we propose to relax this assumption by developing a Bayesian mixture model that allows the amino-acid replacement pattern at different sites of a protein alignment to be described by distinct substitution processes. Our model, named CAT, assumes the existence of distinct processes (or classes) differing by their equilibrium frequencies over the 20 residues. Through the use of a Dirichlet process prior, the total number of classes and their respective amino-acid profiles, as well as the affiliations of each site to a given class, are all free variables of the model. In this way, the CAT model is able to adapt to the complexity actually present in the data, and it yields an estimate of the substitutional heterogeneity through the posterior mean number of classes. We show that a significant level of heterogeneity is present in the substitution patterns of proteins, and that the standard one-matrix model fails to account for this heterogeneity. By evaluating the Bayes factor, we demonstrate that the standard model is outperformed by CAT on all of the data sets which we analyzed. Altogether, these results suggest that the complexity of the pattern of substitution of real sequences is better captured by the CAT model, offering the possibility of studying its impact on phylogenetic reconstruction and its connections with structure-function determinants.
We propose a software package, PhyloBayes 3, which can be used for conducting Bayesian phylogenetic reconstruction and molecular dating analyses, using a large variety of amino acid replacement and nucleotide substitution models, including empirical mixtures or non-parametric models, as well as alternative clock relaxation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.