Background: There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. Methods: Here, we tested the antiviral properties of interferons (IFNs), alone and with other drugs in vitro. Results: While IFNs alone were insufficient to completely abolish replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), IFNα, in combination with remdesivir, EIDD-2801, camostat, cycloheximide, or convalescent serum, proved to be more effective. Transcriptome and metabolomic analyses revealed that the IFNα–remdesivir combination suppressed SARS-CoV-2-mediated changes in Calu-3 cells and lung organoids, although it altered the homeostasis of uninfected cells and organoids. We also demonstrated that IFNα combinations with sofosbuvir, telaprevir, NITD008, ribavirin, pimodivir, or lamivudine were effective against HCV, HEV, FLuAV, or HIV at lower concentrations, compared to monotherapies. Conclusions: Altogether, our results indicated that IFNα can be combined with drugs that affect viral RNA transcription, protein synthesis, and processing to make synergistic combinations that can be attractive targets for further pre-clinical and clinical development against emerging and re-emerging viral infections.
SARS-CoV-2 and its vaccine/immune-escaping variants continue to pose a serious threat to public health due to a paucity of effective, rapidly deployable, and widely available treatments. Here, we address these challenges by combining Pegasys (IFNα) and nafamostat to effectively suppress SARS-CoV-2 infection in cell culture and hamsters. Our results indicate that Serpin E1 is an important mediator of the antiviral activity of IFNα and that both Serpin E1 and nafamostat can target the same cellular factor TMPRSS2, which plays a critical role in viral replication. The low doses of the drugs in combination may have several clinical advantages, including fewer adverse events and improved patient outcome. Thus, our study may provide a proactive solution for the ongoing pandemic and potential future coronavirus outbreaks, which is still urgently required in many parts of the world.
Human T-lymphotropic virus type 1 (HTLV-1) is estimated to affect 5 to 10 million people globally and can cause severe and potentially fatal disease, including adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The burden of HTLV-1 infection appears to be geographically concentrated, with high prevalence in discrete regions and populations.
There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. In the present study, we found that recombinant human interferon-alpha (IFNa) triggered cell intrinsic and extrinsic antiviral responses and reduced replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human lung epithelial Calu-3 cells. However, IFNa alone was insufficient to completely abolish SARS-CoV-2 replication. Combinations of IFNa with camostat, remdesivir, EIDD-2801, cycloheximide or convalescent serum showed strong synergy and effectively inhibited SARS-CoV-2 infection. Additionally, we demonstrated synergistic antiviral activity of IFNa2a with pimodivir against influenza A virus (FluAV) infection in human lung epithelial A549 cells, as well as of IFNa2a with lamivudine against human immunodeficiency virus 1 (HIV-1) infection in human TZM-bl cells. Our results indicate that IFNa2a-based combinational therapies help to reduce drug dose and improve efficacy in comparison with monotherapies, making them attractive targets for further pre-clinical and clinical development.
SARS-CoV-2 and its vaccine/immune-escaping variants continue to pose a serious threat to public health due to a paucity of effective, rapidly deployable, and widely available treatments. Here we address these challenges by combining Pegasys (IFNa) and nafamostat to effectively suppress SARS-CoV-2 infection in cell culture and hamsters. Our results indicate that Serpin E1 is an important mediator of the antiviral activity of IFNa and that both Serpin E1 and camostat can target the same cellular factor TMPRSS2, which plays a critical role in viral replication. The low doses of the drugs in combination may have several clinical advantages, including fewer adverse events and improved patient outcome. Thus, our study may provide a proactive solution for the ongoing pandemic and potential future coronavirus outbreaks, which is still urgently required in many parts of the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.