Abstract:The Ice, Cloud and Land Elevation Satellite (ICESat) laser altimetry mission from 2003 to 2008 provided an important dataset for elevation measurements. The quality of GLAS/ICESat (Geoscience Laser Altimeter System) data was investigated for Lake Leman in Switzerland and France by comparing laser data to hydrological gauge water levels. The correction of GLAS/ICESat waveform saturation successfully improved the quality of water elevation data. First, the ICESat elevations and waveforms corresponding to water footprints across the transition from the land to water were analyzed. Water elevations (2 to 10 measurements) following the land-water transition are often of lesser quality. The computed accuracy for the ICESat elevation measurements is approximately 5 cm, excluding transitions footprints, and 15 cm, including these footprints. Second, the accuracy of ICESat elevation was studied using data acquired on French rivers with a width greater than the size of the ICESat footprint. The obtained root mean square error (RMSE) for ICESat elevations in regard to French rivers was 1.14 m (bias = 0.07 m; standard deviation = 1.15 m), which indicates that small rivers could not be monitored using ICESat with acceptable accuracy due to land-water transition sensor inertia.
International audiencedata with saturation correction of ICESat waveforms, spatial filtering to avoid measurement disturbance from the land-water transition effects on waveform saturation and data selection to avoid trends in water elevations across space. Initially this paper analyzes 237 collected ICESat transects, consistent with the available hydrometric ground stations for four of the Great Lakes. By adapting a geostatistical framework, a high frequency autocorrelation between successive shot elevation values was observed and then modeled for 45% of the 237 transects. The modeled autocorrelation was therefore used to estimate water elevations at the transect scale and the resulting uncertainty for the 117 transects without trend. This uncertainty was 8 times greater than the usual computed uncertainty, when no temporal correlation is taken into account. This temporal correlation, corresponding to approximately 11 consecutive ICESat shots, could be linked to low transmitted ICESat GLAS energy and to poor weather conditions. Assuming Gaussian uncertainties for both reference data and ICESat data upscaled at the transect scale, we derived GLAS deviations statistics by averaging the results at station and lake scales. An overall bias of -4.6 cm (underestimation) and an overall standard deviation of 11.6 cm were computed for all lakes. Results demonstrated the relevance of taking autocorrelation into account in satellite data uncertainty assesment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.