A2B7 compounds (A = rare earth or Mg, B = transition metal) are widely studied as active materials for negative electrode in Ni-MH batteries. By playing on the substitution rate of both A and B elements, it is possible to prepare various compositions. This strategy will help to improve the properties, for example get a higher reversible hydrogen capacity and a well-adapted hydrogen sorption pressure. Indeed, A can be almost all light rare earths (La to Gd), yttrium and alkaline earth metals (Mg or Ca), whereas B can contain various late transition metals (Mn to Ni). To understand the effects of composition on the physicochemical properties of La2Ni7-based compound, various pseudo-binary systems have been investigated: Gd2-xLaxNi7 (x = 0, 0.6, 1, 1.5), Sm2-xLaxNi7 (x = 0, 0.5, 1, 1.5), Y2-xLaxNi7 (x = 0, 0.4, 0.5, 0.6, 0.8, 1, 1.5, 1.75) and A0.5La1.1Mg0.4Ni7 (A = Sm, Gd and Y). To determine their crystallographic properties, X-ray diffraction analysis was performed followed by Rietveld refinement. Thermodynamic properties regarding reversible hydrogen sorption were investigated at room temperature. Quaternary compounds present drastically improved sorption properties in the frame of practical energy storage applications with reversible capacity equivalent to 400 mAh/g for the compound La1.1Sm0.5Mg0.4Ni7.
AB5 compounds (A = rare earth, B = transition metal) have been widely studied as anodes for Ni-MH applications. However, they have reached their technical limitations and the search for new promising materials with high capacity is foreseen. ABy compounds (2 < y < 5) are good candidates. They are made by stacking [AB5] and [A2B4] units along the c crystallographic axis. The latter unit allows a large increase in capacity, while the [AB5] unit provides good cycling stability. Consequently, the AB3.8 composition (i.e. A5B19 with three [AB5] for one [A2B4]) is expected to exhibit better cycling stability than the AB3.5 (i.e. A2B7 with two [AB5] for one [A2B4]). Furthermore, substitution of rare earth by light magnesium improves both the capacity and cycling stability. In this paper, we compare the hydrogenation and corrosion properties of two binary compounds SmNi3.5 and SmNi3.8 and two pseudo-binary ones (Sm,Mg)Ni3.5 and (Sm,Mg)Ni3.8. A better solid-gas cycling stability is highlighted for the binary SmNi3.8. The pseudo-binary compounds also exhibit higher cycling stability than the binary ones. Furthermore, their resistance to corrosion was investigated. I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.