Open Archive Toulouse Archive OuverteOATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible To cite this version: Taillandier AbstractThe agent-based modeling approach is now used in many domains such as geography, ecology, or economy, and more generally to study (spatially explicit) socio-environmental systems where the heterogeneity of the actors and the numerous feedback loops between them requires a modular and incremental approach to modeling. One major reason of this success, besides this conceptual facility, can be found in the support provided by the development of increasingly powerful software platforms, which now allow modelers without a strong background in computer science to easily and quickly develop their own models. Another trend observed in the latest years is the development of much more descriptive and detailed models able not only to better represent complex systems, but also answer more intricate questions. In that respect, if all agent-based modeling platforms support the design of small to mid-size models, i.e. models with little heterogeneity between agents, simple representation of the environment, simple agent decisionmaking processes, etc., very few are adapted to the design of large-scale models. GAMA is one of the latter. It has been designed with the aim of supporting the writing (and composing) of fairly complex models, with a strong support of the spatial dimension, while guaranteeing non-computer scientists an easy access to high-level, otherwise complex, operations. This paper presents GAMA 1.8, the latest revision to date of the platform, with a focus on its modeling language and its capabilities to manage the spatial dimension of models. The capabilities of GAMA are illustrated by the presentation of applications that take advantage of its new features.
The purposes of the current study were to identify affective profiles of athletes both before and during the competition and to examine differences between these profiles on coping and attainment of sport goals among a sample of 306 athletes. The results of hierarchical (Ward’s method) and nonhierarchical (k means) cluster analyses revealed four different clusters both before and during the competition. The four clusters were very similar at the two measurement occasions: high positive affect facilitators (n = 88 and 81), facilitators (n = 75 and 25), low affect debilitators (n = 83 and 127), and high negative affect debilitators (n = 60 and 73). Results of MANOVAs revealed that coping and attainment of sport achievement goal significantly differed across the affective profiles. Results are discussed in terms of current research on positive and negative affective states.
This study examined the relationship between perceived coaching behaviors, coping strategies during a sport competition, and sport achievement. A prospective design was used in which 80 athletes from individual sports completed measures of perceived coaching behaviors two days before a competition (Time 1) and measures of coping and sport achievement within three hours after a sport competition (Time 2). As expected, results of multiple regressions indicated that supportive coaching was a positive predictor of task-oriented coping and sport achievement whereas unsupportive coaching was a positive predictor of disengagement-oriented coping. Both types of coping were significantly associated with sport achievement. Task-oriented coping was a significant partial mediator in the relation between supportive coaching and sport achievement. This study, which contributes to both the coaching and coping literatures, highlights the role of supportive coaching behaviors in the initiation of effective stress management during sport competitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.