Peptides are very diverse molecules that can participate in a wide variety of biological processes. In this way, peptides are attractive for doping, since these molecules can activate or trigger biological processes that can improve the sports performance of athletes. Peptide molecules are found in the official World Anti-Doping Agency lists, mainly in sections S2, S4, and S5. In most cases, these molecules have a very short half-life in the body and/or are identical to natural molecules in the body, making it difficult to analyze them as performance-enhancing drugs. This article reviews the role of peptides in doping, with special emphasis on the peptides used as reference materials, the pretreatment of samples in biological matrices, the instrumentation, and the validation of analytical methodologies for the analysis of peptides used in doping. The growing need to characterize and quantify these molecules, especially in complex biological matrices, has generated the need to search for robust strategies that allow for obtaining sensitive and conclusive results. In this sense, strategies such as solid phase peptide synthesis (SPPS), seeking to obtain specific peptides, metabolites, or isotopically labeled analogs, is a key tool for adequate quantification of different peptide molecules in biological matrices. This, together with the use of optimal methodologies for sample pretreatment (e.g., SPE or protein precipitation), and for subsequent analysis by high-resolution techniques (mainly hyphenated LC-HRMS techniques), have become the preferred instrumentation to meet the analytical challenge involved in the analysis of peptides in complex matrices.
Mycotoxins are secondary metabolites that are known to be toxic to humans and animals. On the other hand, some mycotoxins and their analogues possess antioxidant as well as antitumor properties,...
Using the van Deemter model, the efficiency of three stationary phase systems in the analysis of a mixture of synthetic peptides was evaluated: (i) monolithic, (ii) packed, and (iii) core−shell columns, and it was shown that the efficiency of the monolithic column is superior to the others, specifically using it, the lowest values of H min (0.03 and 0.1 mm) were obtained, and additionally its efficiency was not significantly affected by increasing the flow. Using the concept of the gradient retention factor (k*), a method for chromatographic separation of a peptide complex mixture was designed, implemented, and optimized and then transferred from a packed column to a monolithic one. The results showed that it was possible to separate all components of the mixture using both evaluated columns; moreover, the analysis time was reduced from 70 to 10 min, conserving the critical pair resolution (1.4), by the transfer method using the k* concept. The method developed was tested against a mixture of doping peptides, showing that this method is efficient for separating peptides of various natures. This investigation is very useful for the development of methods for the analysis of complex peptide mixtures since it provides a systematic approach that can be extrapolated to different types of columns and instrumentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.