We present herein the preparation of novel polymer inclusion membranes (PIMs) containing insoluble β-CD polymer as a carrier, polyvinyl chloride as a base polymer, and dibuthylphtalate (DBP) as a plasticizer in varying proportions. The prepared PIMs can be obtained by a simple, fast, and high-yield preparation process. Physicochemical characterizations of such membranes occurred in a homogeneous structure. In addition, Fourier-transform infrared Spectroscopy (FT-IR) analysis found that DBP was inserted between these polymeric chains by non-covalent interactions. This led to a spacing of PVC/poly(β-cyclodextrin) chains inducing a better access of guest molecules to PIM cyclodextrins. To achieve the elimination of ibuprofen and progesterone, two examples of emerging environmental contaminants that can lead to possible alterations to aquatic environments and affect human health, the effect of three operating parameters was studied (pH, the proportion of β-cyclodextrin polymer, and wastewater agitation). The proportion of β-cyclodextrin polymer and wastewater agitation had a favorable influence on drug extraction at 10 ppm. The PIMs containing β-cyclodextrin polymer was unstable in basic conditions and was more effective at acidic pH. These initial results demonstrate the high potential for drug extraction of this polymer.
Cyclosporine (CsA) has a selective property of suppressing various T-lymphocyte functions. This is of utmost importance in preventing allograft rejection by several organ transplantations, as well as in the treatment of systemic and local autoimmune disorders. However, the poor water solubility of CsA can be a major hurdle for its absorption into the blood stream, which leads to low bioavailability and thus less efficacy. The aim of this study was to prepare, characterize, and evaluate in vitro as well as in vivo, the potential of the innovative CsA drug delivery system. The latter contains CsA in spherical amorphous solid dispersion (SASD) which is embedded in an original α-cyclodextrin and β-cyclodextrin polymer mixture (Poly-αβ-CD) as a multifunctional amorphous carrier. The new developed SASD formulation showed that CsA was molecularly dispersed in αβ-cyclodextrins in an amorphous form, as was confirmed by physicochemical characterization studies. Interestingly, the peptide secondary structure, and thus, the drug activity was not impacted by the preparation of SASD as was shown by circular dichroism. Furthermore, the in vitro CsA release profile kinetics was almost identical to the commercially available product Neoral®. This study presents the first in vivo proof-of-concept for a novel drug delivery system based on Poly-αβ-CD containing CsA, with SASD allowing for increased bioavailibility. The pharmacokinetic parameters of cyclosporine A from the spherical spray-dried dispersion formulation was demonstrated in a “rat” animal model. For comparison, the commercially available Neoral® was studied. Importantly, the pharmacokinetic parameters were improved by extending Tmax from 2 to 3 h after the oral administration in rats, and eventually preventing the enterohepatic circulation. All these results clearly demonstrate the improved pharmacokinetic parameters and enhanced bioavailability of CsA in the new developed drug delivery system. These data demonstrated the superiority of the newly developed Poly-αβ-CD formulation for oral administration of the poorly soluble CsA in vivo without altering its secondary structure. Poly-αβ-CD can be a very useful tool for the oral administration of poorly water-soluble drugs.
A study to enhance the dissolution rate of nimesulide (NIM), a poorly water-soluble, non-steroidal anti-inflammatory drug, was carried out through developing new amorphous solid dispersions (ASD) based on soluble or insoluble water cyclodextrin copolymers (alpha-cyclodextrin, beta-cyclodextrin and y-cyclodextrin polymers) synthesized by direct melt polycondensation. Amorphous solid dispersions of NIM in cyclodextrin copolymers, obtained by solvent evaporation, were characterized by thermogravimetric analyzer (TGA), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and fourier transform-infrared spectroscopy (FT-IR). These analyses provided the existence of interactions between amorphous drug and its carrier. A burst release of more than 80% NIM within approximately 70 minutes was seen with soluble alpha-cyclodextrin polymers (poly-alpha-sol) and insoluble gamma-cyclodextrin polymers (poly-gamma-insol) where no significant differences were observed with the other copolymers. Mathematical kinetic models such as zero order, Higuchi and Korsmeyer-Peppas were used to evaluate the kinetic and mechanism of release of NIM from the different ASD compared to lactose reference matrix. The kinetic of release of NIM from different ASD followed a Higuchi model and the mechanism of release was explained by Korsmeyer-Peppas model in which a fickian diffusion for lactose and soluble beta-cyclodextrin polymers (poly-beta-sol) was observed. However, an anomalous non-Fickian transport was found for the other copolymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.