In this paper we describe a fuzzy logic based approach for providing biologically based motivations to be used in evolutionary mobile robot learning. Takagi-Sugeno-Kang (TSK) fuzzy logic is used to motivate a small mobile robot to acquire complex behaviors and to perform environment recognition. This method is implemented and tested in behavior based navigation and action sequence based environment recognition tasks in a Khepera mobile robot simulator. Our fuzzy logic based motivation technique is shown as a simple and powerful method for a robot to acquire a diverse set of fit behaviors as well as providing an intuitive user interface framework.
Abstract. In this paper we investigate and develop a real-world reinforcement learning approach to autonomously recharge a humanoid Nao robot [1]. Using a supervised reinforcement learning approach, combined with a Gaussian distributed states activation, we are able to teach the robot to navigate towards a docking station, and thus extend the duration of autonomy of the Nao by recharging. The control concept is based on visual information provided by naomarks and six basic actions. It was developed and tested using a real Nao robot within a home environment scenario. No simulation was involved. This approach promises to be a robust way of implementing real-world reinforcement learning, has only few model assumptions and offers faster learning than conventional Q-learning or SARSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.