Summaryobjective To evaluate Trypanosoma brucei gambiense infection in peri-domestic livestock from Kogo and Mbini foci (Equatorial Guinea) in order to investigate its possible implication in the sleeping sickness transmission cycle in these hypoendemic foci.methods Samples from 698 domestic animals (goats, sheep and pigs) from trypanosomiasisendemic localities of Kogo and Mbini foci were tested for animal trypanosomes and T. b. gambiense (group I) by species-specific polymerase chain reaction.results Trypanosoma brucei s.l., the predominant trypanosome species, was detected in 182 (52.6%) samples from Mbini and in 127 (36.1%) samples from Kogo. T. b. gambiense was only identified in seven (2%) of the Mbini samples and one co-infection (with T. vivax) was observed.conclusion The occurrence of T. b. gambiense in peri-domestic livestock in Mbini and its absence in Kogo could explain the epidemiological differences between the two foci and could have significant implications for sleeping sickness control in Equatorial Guinea.
Tsetse flies of the palpalis group are major vectors of Human African Trypanosomiasis in Africa. Accurate knowledge of species identity is essential for vector control. Here, we combine ribosomal internal transcribed spacer 1 (ITS1), mitochondrial Cytochrome Oxidase 1 (COI) and microsatellites to determine the population structure and phylogenetic relations of Glossina p. palpalis in Equatorial Guinea. CO1 sequence data suggest that G. p. palpalis in Equatorial Guinea is a distinct subspecies from previously described G. p. palpalis in West Africa and Democratic Republic of Congo. Glossina p. palpalis in Equatorial Guinea and DRC share a common ancestor which diverged from West African G. p. palpalis around 1.9 Ma. Previous ITS1 length polymorphism data suggested the possible presence of hybrids in Equatorial Guinea. However, ITS1 showed incomplete lineage sorting compared with clearly defined COI groups, and data from 12 unlinked microsatellites provided no evidence of hybridization. Microsatellite data indicated moderate but significant differentiation between the populations analysed (Rio Campo, Mbini and Kogo). Moreover, unlike previous studies of G. p. palpalis, there was no evidence for heterozygote deficiency, presence of migrants or cryptic population structure. Variance effective population size at Rio Campo was estimated at 501-731 assuming eight generations per year. This study of the population genetics of G. p. palpalis in central Africa provides the first estimate of genetic differentiation between geographically separated G. p. palpalis populations.
BackgroundSleeping sickness is spread over 36 Sub-Saharan African countries. In West and Central Africa, the disease is caused by Trypanosoma brucei gambiense, which produces a chronic clinical manifestation. The Luba focus (Bioko Island, Equatorial Guinea) has not reported autochthonous sleeping sickness cases since 1995, but given the complexity of the epidemiological cycle, the elimination of the parasite in the environment is difficult to categorically ensure.Methodology/Principal FindingsThe aim of this work is to assess, by a molecular approach (Polymerase Chain Reaction, PCR), the possible permanence of T. b. gambiense in the vector (Glossina spp.) and domestic fauna in order to improve our understanding of the epidemiological situation of the disease in an isolated focus considered to be under control.The results obtained show the absence of the parasite in peridomestic livestock but its presence, although at very low rate, in the vector. On the other hand, interesting entomological data highlight that an elevated concentration of tsetse flies was observed in two out of the ten villages considered to be in the focus.ConclusionsThese findings demonstrate that even in conditions of apparent control, a complete parasite clearance is difficult to achieve. Further investigations must be focused on animal reservoirs which could allow the parasites to persist without leading to human cases. In Luba, where domestic livestock are scarcer than other foci in mainland Equatorial Guinea, the epidemiological significance of wild fauna should be assessed to establish their role in the maintenance of the infection.
BackgroundAfter the introduction of an artemisinin-based combination therapy, the reduction of prevalence of malaria infections has shown a remarkable progress during the last decade. However due to the lack of a consistent malaria control programme and socioeconomic inequalities, Plasmodium infection is still one of the major cause of disease in Equatorial Guinea, namely in the rural communities. This study explored the associated risk factors of malaria transmission at the microeconomic level (households) in two rural villages of mainland Equatorial Guinea.MethodsThis survey involved 232 individuals living in 69 households located in two rural villages, Ngonamanga and Miyobo, of coastal and interior of Equatorial Guinea, respectively. Malaria prevalence was measured by PCR and parasitaemia level by optical microscopy; household socioeconomic status (SES) was measured based on house characteristics using a 2-step cluster analysis. Logistic regression analysis was performed to investigate the relationship of a diverse set of independent variables on being diagnosed with malaria and on showing high levels of parasitaemia.ResultsThe prevalence of Plasmodium spp. infection was 69%, with 80% of households having at least one parasitaemic member. The majority of houses have eaves (80%), walls of clay/wood (90%) and zinc roof (99%) and only 10% of them have basic sanitation facilities. The studied areas showed reduced rates of indoor residual spraying coverage (9%), and long-lasting insecticide-treated net ownership (35%), with none of these preventive tools showing any significant effects on malaria risk in these areas. Neither the risk of malaria infection (PCR positive result) or the development of high parasitaemia did show association with SES.ConclusionsThis study has contributed to reinforce the importance of living conditions associated to a high risk of malaria infection and vulnerability to develop high parasitaemia. This study also contributes to future malaria control interventions to be implemented in mainland Equatorial Guinea or in other countries with similar environmental conditions.Electronic supplementary materialThe online version of this article (10.1186/s12936-018-2354-x) contains supplementary material, which is available to authorized users.
Efforts to control malaria may affect malaria parasite genetic variability and drug resistance, the latter of which is associated with genetic events that promote mechanisms to escape drug action. The worldwide spread of drug resistance has been a major obstacle to controlling Plasmodium falciparum malaria, and thus the study of the origin and spread of associated mutations may provide some insights into the prevention of its emergence. This study reports an analysis of P. falciparum genetic diversity, focusing on antimalarial resistance-associated molecular markers in two socioeconomically different villages in mainland Equatorial Guinea. The present study took place 8 years after a previous one, allowing the analysis of results before and after the introduction of an artemisinin-based combination therapy (ACT), i.e., artesunate plus amodiaquine. Genetic diversity was assessed by analysis of the Pfmsp2 gene and neutral microsatellite loci. Pfdhps and Pfdhfr alleles associated with sulfadoxine-pyrimethamine (SP) resistance and flanking microsatellite loci were investigated, and the prevalences of drug resistance-associated point mutations of the Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps genes were estimated. Further, to monitor the use of ACT, we provide the baseline prevalences of K13 propeller mutations and Pfmdr1 copy numbers. After 8 years, noticeable differences occurred in the distribution of genotypes conferring resistance to chloroquine and SP, and the spread of mutated genotypes differed according to the setting. Regarding artemisinin resistance, although mutations reported as being linked to artemisinin resistance were not present at the time, several single nucleotide polymorphisms (SNPs) were observed in the K13 gene, suggesting that closer monitoring should be maintained to prevent the possible spread of artemisinin resistance in Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.