The charge compensation mechanisms that occur when Li+ substitutes a 2+ element in superionic conductor (MgCoNiCuZn)O high‐entropy oxide have been studied using a combination of thermogravimetric analysis and X‐ray photoemission spectroscopy. Depending on the concentration of Li+ in the compound, the charge compensation involves first partial oxidation of Co2+ into Co3+ for low fraction of Li+, and then a combination of both the oxidation of cobalt and the formation of oxygen vacancies for large fraction of Li+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.