Abstract. This article reviews the use of first order convex optimization schemes to solve the discretized dynamic optimal transport problem, initially proposed by Benamou and Brenier. We develop a staggered grid discretization that is well adapted to the computation of the L 2 optimal transport geodesic between distributions defined on a uniform spatial grid. We show how proximal splitting schemes can be used to solve the resulting large scale convex optimization problem. A specific instantiation of this method on a centered grid corresponds to the initial algorithm developed by Benamou and Brenier. We also show how more general cost functions can be taken into account and how to extend the method to perform optimal transport on a Riemannian manifold.
International audienceThis article introduces a generalization of the discrete optimal transport, with applications to color image manipulations. This new formulation includes a relaxation of the mass conservation constraint and a regularization term. These two features are crucial for image processing tasks where one must take into account families of multimodal histograms with large mass variation across modes. The corresponding relaxed and regularized transportation problem is the solution of a convex optimization problem. Depending on the regularization used, this minimization can be solved using standard linear programming methods or first order proximal splitting schemes. The resulting transportation plan can be used as a color transfer map, which is robust to mass variation across image color palettes. Furthermore, the regularization of the transport plan helps remove colorization artifacts due to noise amplification. We also extend this framework to compute the barycenter of distributions. The barycenter is the solution of an optimization problem, which is separately convex with respect to the barycenter and the transportation plans, but not jointly convex. A block coordinate descent scheme converges to a stationary point of the energy. We show that the resulting algorithm can be used for color normalization across several images. The relaxed and regularized barycenter defines a common color palette for those images. Applying color transfer toward this average palette performs a color normalization of the input images
Abstract-In this paper, we address the problem of recovering a color image from a grayscale one. The input color data comes from a source image considered as a reference image. Reconstructing the missing color of a grayscale pixel is here viewed as the problem of automatically selecting the best color among a set of colors candidates while simultaneously ensuring the local spatial coherency of the reconstructed color information. To solve this problem, we propose a variational approach where a specific energy is designed to model the color selection and the spatial constraint problems simultaneously. The contributions of this paper are twofold: first, we introduce a variational formulation modeling the color selection problem under spatial constraints and propose a minimization scheme which allows computing a local minima of the defined non-convex energy. Second, we combine different patch-based features and distances in order to construct a consistent set of possible color candidates. This set is used as input data and our energy minimization allows to automatically select the best color to transfer for each pixel of the grayscale image. Finally, experiments illustrate the potentiality of our simple methodology and show that our results are very competitive with respect to the state-of-the-art methods.
Magnetic resonance (MR) guided high intensity focused ultrasound and external beam radiotherapy interventions, which we shall refer to as beam therapies/interventions, are promising techniques for the non-invasive ablation of tumours in abdominal organs. However, therapeutic energy delivery in these areas becomes challenging due to the continuous displacement of the organs with respiration. Previous studies have addressed this problem by coupling high-framerate MR-imaging with a tracking technique based on the algorithm proposed by Horn and Schunck (H and S), which was chosen due to its fast convergence rate and highly parallelisable numerical scheme. Such characteristics were shown to be indispensable for the real-time guidance of beam therapies. In its original form, however, the algorithm is sensitive to local grey-level intensity variations not attributed to motion such as those that occur, for example, in the proximity of pulsating arteries.In this study, an improved motion estimation strategy which reduces the impact of such effects is proposed. Displacements are estimated through the minimisation of a variation of the H and S functional for which the quadratic data fidelity term was replaced with a term based on the linear L(1)norm, resulting in what we have called an L(2)-L(1) functional.The proposed method was tested in the livers and kidneys of two healthy volunteers under free-breathing conditions, on a data set comprising 3000 images equally divided between the volunteers. The results show that, compared to the existing approaches, our method demonstrates a greater robustness to local grey-level intensity variations introduced by arterial pulsations. Additionally, the computational time required by our implementation make it compatible with the work-flow of real-time MR-guided beam interventions.To the best of our knowledge this study was the first to analyse the behaviour of an L(1)-based optical flow functional in an applicative context: real-time MR-guidance of beam therapies in moving organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.