BACKGROUND The present study tested the hypothesis that inappropriate activation of the brain renin–angiotensin system (RAS) contributes to the pathogenesis of blood–brain barrier (BBB) disruption and cognitive impairment during development of salt-dependent hypertension. Effects of an angiotensin II (AngII) type-1 receptor blocker (ARB), at a dose that did not reduce blood pressure, were also examined. METHODS Dahl salt-sensitive (DSS) rats at 6 weeks of age were assigned to three groups: low-salt diet (DSS/L; 0.3% NaCl), high-salt diet (DSS/H; 8% NaCl), and high-salt diet treated with ARB, olmesartan at 1 mg/kg. RESULTS DSS/H rats exhibited hypertension, leakage from brain microvessels in the hippocampus, and impaired cognitive functions, which were associated with increased brain AngII levels, as well as decreased mRNA levels of tight junctions (TJs) and collagen-IV in the hippocampus. In DSS/H rats, olmesartan treatment, at a dose that did not alter blood pressure, restored the cognitive decline, and ameliorated leakage from brain microvessels. Olmesartan also decreased brain AngII levels and restored mRNA expression of TJs and collagen-IV in DSS/H rats. CONCLUSIONS These results suggest that during development of salt-dependent hypertension, activation of the brain RAS contributes to BBB disruption and cognitive impairment. Treatment with an ARB could elicit neuroprotective effects in cognitive disorders by preventing BBB permeability, which is independent of blood pressure changes.
Recent studies have shown that blocking non-proteolytically activated prorenin with a decoy peptide for the handle region of the prorenin prosegment (HRP) inhibits the development of microvascular complications in diabetic animals. In the present study, we investigated whether non-proteolytic activation of prorenin contributes to the development of fructose-induced insulin resistance. Rats were fed a standard diet (n = 10), a 60% high fructose diet (n = 16), or a high fructose diet + HRP (0.1 mg kg −1 day −1 , n = 16) for 10 weeks. Fructose-fed rats showed higher systolic blood pressure (SBP), fasting plasma triglycerides, total cholesterol and insulin levels; which, except for SBP, were suppressed by HRP. The responses of plasma glucose and insulin levels to oral glucose loading were significantly greater in fructose-fed rats than in standard diet-fed rats. The HRP normalized the enhanced responses of plasma glucose and insulin levels that were observed in fructose-fed rats. Moreover, HRP suppressed the enhanced prorenin activation and angiotensin II formation in the soleus muscle of fructose-fed rats. These data suggest that local angiotensin II generation in skeletal muscle, induced by non-proteolytic activation of prorenin, contributes to the development of insulin resistance induced by a high fructose diet.
The renin-angiotensin system has an important function in the regulation of blood pressure as well as in pathophysiological processes in the central nervous system. We examined the effects of the angiotensin receptor blocker candesartan (10 mg kg À1 per day, p.o.) on brain angiotensin II levels in angiotensin II-infused hypertensive rats. Angiotensin II or vehicle was infused subcutaneously for 14 days in Sprague-Dawley rats. Angiotensin II infusion resulted in increased blood pressure, an effect that was blocked by candesartan treatment. There was no effect of the angiotensin II infusion on Angiotensin II levels in the brain or on blood-brain barrier permeability. Brain tissue angiotensinogen and angiotensin converting enzyme mRNA levels were not changed by angiotensin II infusion but were decreased by candesartan treatment. At 2 weeks of treatment, CV11974, an active form of candesartan, was detectable in the plasma but was not detectable in brain tissue. These data suggest that treatment with candesartan decreases brain angiotensin II by decreasing brain angiotensinogen and angiotensin converting enzyme gene expression.
Multiple sclerosis (MS) is characterized by inflammatory demyelination and deposition of fibrinogen in the central nervous system (CNS). Elevated levels of a critical inhibitor of the mammalian fibrinolitic system, plasminogen activator inhibitor 1 (PAI-1) have been demonstrated in human and animal models of MS. In experimental studies that resemble neuroinflammatory disease, PAI-1 deficient mice display preserved neurological structure and function compared to wild type mice, suggesting a link between the fibrinolytic pathway and MS. We previously identified a series of PAI-1 inhibitors on the basis of the 3-dimensional structure of PAI-1 and on virtual screening. These compounds have been reported to provide a number of in vitro and in vivo benefits but none was tested in CNS disease models because of their limited capacity to penetrate the blood-brain barrier (BBB). The existing candidates were therefore optimized to obtain CNS-penetrant compounds. We performed an in vitro screening using a model of BBB and were able to identify a novel, low molecular PAI-1 inhibitor, TM5484, with the highest penetration ratio among all other candidates. Next, we tested the effects on inflammation and demyelination in an experimental allergic encephalomyelitis mice model. Results were compared to either fingolimod or 6α-methylprednisolone. Oral administration of TM5484 from the onset of signs, ameliorates paralysis, attenuated demyelination, and axonal degeneration in the spinal cord of mice. Furthermore, it modulated the expression of brain-derived neurotrophic factor, which plays a protective role in neurons against various pathological insults, and choline acetyltransferase, a marker of neuronal density. Taken together, these results demonstrate the potential benefits of a novel PAI-1 inhibitor, TM5484, in the treatment of MS.
Recent studies have suggested that blood-brain barrier (BBB) abnormalities are present from an early stage in patients exhibiting mild symptoms of cognitive impairment during the development of hypertension. There is also growing body of evidence suggesting the potential role of the renin-angiotensin system (RAS) in the pathogenesis of small-vessel disease and cognitive impairment. However, the specific contribution of the RAS to BBB disruption and cognitive impairment remains unclear. We found a significant leakage from brain microvessels in the hippocampus and impaired cognitive functions in angiotensin II (AngII)-infused hypertensive mice, which were associated with increased brain AngII levels. These changes were not observed in AngII-infused AT1a receptor (-/-) mice. We also observed that Dahl salt-sensitive hypertensive rats exhibited hypertension, leakage from brain microvessels in the hippocampus, and impaired cognitive function. In these animals, treatment with an AngII receptor blocker, olmesartan, did not alter blood pressure, but markedly ameliorated leakage from brain microvessels and restored the cognitive decline. These data support the hypothesis that RAS inhibition attenuates cognitive impairment by reducing BBB injury, which is independent of blood pressure changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.