This paper is concerned with extending the stratigraphic model previously introduced by Eymard et al. [Int. J. Numer. Methods Engrg. 60, 527-548 (2004)] and subsequently studied by Gervais and her coauthors for the simulation of large scale transport processes of sediments, subject to an erosion constraint. Two major novelties are considered: (i) the diffusion law relating the flux of sediments and the slope of the topography is now nonlinear and involves a p-Laplacian with p > 2 in order for landscape evolutions to be more realistic; (ii) the sediment transport is now intertwined with the water flows due to lakes and rivers via a direct coupling at the continuous PDE level, which avoids empirical algorithms at the discrete level such as MFD (Multiple Flow Directions) at the price of additional p-Laplacians. Aimed at enriching the capabilities of IFPEN's simulator, these sophistications entail the construction of a new finite volume scheme, the details of which are supplied. The physical model is validated through several test cases. Finally, a further extension of the model to the case of multiple lithologies is presented, along with numerical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.