In vivo, a wild-type pattern of major histocompatibility complex (MHC) class II expression requires a locus control region (LCR). Whereas the role of promoter-proximal MHC class II regulatory sequences is well established, the function of the distal LCR remained obscure. We show here that this LCR is bound by the MHC class II-specific transactivators regulatory factor X (RFX) and class II transactivator (CIITA). Binding of these factors induces long-range histone acetylation, RNA polymerase II recruitment and the synthesis of extragenic transcripts within the LCR. The finding that RFX and CIITA regulate the function of the MHC class II LCR reveals an unexpected degree of complexity in the mechanisms controlling MHC class II gene expression.
MHC class II (MHC-II) genes are regulated by an enhanceosome complex containing two gene-specific transcription factors, regulatory factor X complex (RFX) and CIITA. These factors assemble on a strictly conserved regulatory module (S-X-X2-Y) found immediately upstream of the promoters of all classical and nonclassical MHC-II genes as well as the invariant chain (Ii) gene. To identify new targets of RFX and CIITA, we developed a computational approach based on the unique and highly constrained architecture of the composite S-Y motif. We identified six novel S′-Y′ modules situated far away from the promoters of known human RFX- and CIITA-controlled genes. Four are situated at strategic positions within the MHC-II locus, and two are found within the Ii gene. These S′-Y′ modules function as transcriptional enhancers, are bona fide targets of RFX and CIITA in B cells and IFN-γ-induced cells, and induce broad domains of histone hyperacetylation. These results reveal a hitherto unexpected level of complexity involving long distance control of MHC-II expression by multiple distal regulatory elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.