Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the “knock-down resistance” V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed.
The use of the bacterium Wolbachia is an attractive alternative method to control vector populations. In mosquitoes, as in members of the Culex pipiens complex, Wolbachia induces a form of embryonic lethality called cytoplasmic incompatibility, a sperm-egg incompatibility occurring when infected males mate either with uninfected females or with females infected with incompatible Wolbachia strain(s). Here we explore the feasibility of the Incompatible Insect Technique (IIT), a species-specific control approach in which field females are sterilized by inundative releases of incompatible males. We show that the Wolbachia wPip(Is) strain, naturally infecting Cx. p. pipiens mosquitoes from Turkey, is a good candidate to control Cx. p. quinquefasciatus populations on four islands of the south-western Indian Ocean (La Réunion, Mauritius, Grande Glorieuse and Mayotte). The wPip(Is) strain was introduced into the nuclear background of Cx. p. quinquefasciatus mosquitoes from La Réunion, leading to the LR[wPip(Is)] line. Total embryonic lethality was observed in crosses between LR[wPip(Is)] males and all tested field females from the four islands. Interestingly, most crosses involving LR[wPip(Is)] females and field males were also incompatible, which is expected to reduce the impact of any accidental release of LR[wPip(Is)] females. Cage experiments demonstrate that LR[wPip(Is)] males are equally competitive with La Réunion males resulting in demographic crash when LR[wPip(Is)] males were introduced into La Réunion laboratory cages. These results, together with the geographic isolation of the four south-western Indian Ocean islands and their limited land area, support the feasibility of an IIT program using LR[wPip(Is)] males and stimulate the implementation of field tests for a Cx. p. quinquefasciatus control strategy on these islands.
Background: Mosquito vectors cause a significant human public health burden through the transmission of pathogens. Due to the expansion of international travel and trade, the dispersal of these mosquito vectors and the pathogens they carry is on the rise. Entomological surveillance is therefore required which relies on accurate mosquito species identification. This study aimed to optimize the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for mosquito identification. Methods: Aedes aegypti of the Bora-Bora strain and 11 field-sampled mosquito species were used in this study. Analyses were performed to study the impact of the trapping duration on mosquito identification with MALDI-TOF MS. The best preservation methods to use for short, medium and long-term preservation before MALDI-TOF MS analysis were also assessed. In addition, the number of specimens per species required for MALDI-TOF MS database creation was determined. The first MALDI-TOF database of New Caledonian mosquitoes was assembled and the optimal threshold for mosquito species identification according to the sensitivity and specificity of this technique was determined. Results: This study showed that the identification scores decreased as the trapping duration increased. High identification scores were obtained for mosquitoes preserved on silica gel and cotton at room temperature and those frozen at − 20 °C, even after two months of preservation. In addition, the results showed that the scores increased according to the number of main spectrum patterns (MSPs) used until they reached a plateau at 5 MSPs for Ae. aegypti. Mosquitoes (n = 67) belonging to 11 species were used to create the MALDI-TOF reference database. During blind test analysis, 96% of mosquitoes tested (n = 224) were correctly identified. Finally, based on MALDI-TOF MS sensitivity and specificity, the threshold value of 1.8 was retained for a secure identification score. Conclusions: MALDI-TOF MS allows accurate species identification with high sensitivity and specificity and is a promising tool in public health for mosquito vector surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.