Background Extracorporeal cardiopulmonary resuscitation (E-CPR) is used for the treatment of refractory cardiac arrest. However, the optimal target to reach for mean arterial pressure (MAP) remains to be determined. We hypothesized that MAP levels critically modify cerebral hemodynamics during E-CPR and tested two distinct targets (65–75 vs 80–90 mmHg) in a porcine model. Methods Pigs were submitted to 15 min of untreated ventricular fibrillation followed by 30 min of E-CPR. Defibrillations were then delivered until return of spontaneous circulation (ROSC). Extracorporeal circulation was initially set to an average flow of 40 ml/kg/min. The dose of epinephrine was set to reach a standard or a high MAP target level (65–75 vs 80–90 mmHg, respectively). Animals were followed during 120-min after ROSC. Results Six animals were included in both groups. During E-CPR, high MAP improved carotid blood flow as compared to standard MAP. After ROSC, this was conversely decreased in high versus standard MAP, while intra-cranial pressure was superior. The pressure reactivity index (PRx), which is the correlation coefficient between arterial blood pressure and intracranial pressure, also demonstrated inverted patterns of alteration according to MAP levels during E-CPR and after ROSC. In standard-MAP, PRx was transiently positive during E-CPR before returning to negative values after ROSC, demonstrating a reversible alteration of cerebral autoregulation during E-CPR. In high-MAP, PRx was negative during E-CPR but became sustainably positive after ROSC, demonstrating a prolonged alteration in cerebral autoregulation after ROSC. It was associated with a significant decrease in cerebral oxygen consumption in high- versus standard-MAP after ROSC. Conclusions During early E-CPR, MAP target above 80 mmHg is associated with higher carotid blood flow and improved cerebral autoregulation. This pattern is inverted after ROSC with a better hemodynamic status with standard versus high-MAP.
Aim: Head and thorax elevation during cardiopulmonary resuscitation improves cerebral hemodynamics and ultimate neurological outcome after cardiac arrest. Its effect during extracorporeal cardiopulmonary resuscitation (E-CPR) is unknown. We tested whether this procedure could improve hemodynamics in swine treated by E-CPR. Methods and Results: Pigs were anesthetized and submitted to 15 minutes of untreated ventricular fibrillation followed by E-CPR. Animals randomly remained in flat position (flat group) or underwent head and thorax elevation since E-CPR institution (head-up group). Electric shocks were delivered after 30 minutes until the return of spontaneous circulation (ROSC). They were followed during 120 minutes after ROSC. After 30 minutes of E-CPR, ROSC was achieved in all animals, with no difference regarding blood pressure, heart rate, and extracorporeal membrane of oxygenation flow among groups. The head-up group had an attenuated increase in ICP as compared with the flat group after cardiac arrest (13 ± 1 vs. 26 ± 2 mm Hg at the end of the follow-up, respectively). Cerebral perfusion pressure tended to be higher in the head-up versus flat group despite not achieving statistical difference (66 ± 1 vs 46 ± 1 mm Hg at the end of the follow-up). Carotid blood flow and cerebral oxygen saturation were not significantly different among groups. Conclusion: During E-CPR, head and thorax elevation prevents ICP increase. Whether it could improve the ultimate neurological outcome in this situation deserves further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.