Emulsions are a type of metastable colloid composed of two or more immiscible liquids. These systems are widely used in a variety of applications, such as cosmetics, drug delivery, food, etc. Although there exist theoretical foundations which offer insights into these systems, industry practices often favor empirical methods. In this work a multiscale approximation is used for the study of water-in-oil (W/O) emulsions. This approach allows for the analysis of interrelationships among macroscopic, microscopic, process, and formulation variables. Additionally, the emulsions were modeled with Computational Fluid Dynamics (CFD), which permitted a better understanding of the role process variables plays. It was possible to establish relationships among incorporated energy, elastic modulus, mean droplet diameter, and stability measurements. In addition, differences in impeller geometry were found to have an effect in the aforementioned variables. Finally, the CFD model allowed for the observation of gradients in relative viscosity, droplet diameter, and dispersed phase volume fraction.
Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can heavily benefit from mathematical modelling. In this paper, the vast literature on hydrodynamic and integrated MBR modelling is critically reviewed. Hydrodynamic models are used at different scales and focus mainly on fouling and only little on system design/optimisation. Integrated models also focus on fouling although the ones including costs are leaning towards optimisation. Trends are discussed, knowledge gaps identified and interesting routes for further research suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.