Cytomegalovirus-based vaccine vectors offer interesting opportunities for T cell-based vaccination purposes as CMV infection induces large numbers of functional effector-like cells that accumulate in peripheral tissues, a process termed memory inflation. Maintenance of high numbers of peripheral CD8 T cells requires continuous replenishment of the inflationary T cell pool. Here, we show that the inflationary T cell population contains a small subset of cells expressing the transcription factor Tcf1. These Tcf1+ cells resemble central memory T cells and are proliferation competent. Upon sensing viral reactivation events, Tcf1+ cells feed into the pool of peripheral Tcf1− cells and depletion of Tcf1+ cells hampers memory inflation. TCR repertoires of Tcf1+ and Tcf1− populations largely overlap, with the Tcf1+ population showing higher clonal diversity. These data show that Tcf1+ cells are necessary for sustaining the inflationary T cell response, and upholding this subset is likely critical for the success of CMV-based vaccination approaches.
Asymmetric partitioning of fate determinants is a mechanism that contributes to T cell differentiation. However, it remains unclear whether the ability of T cells to divide asymmetrically is influenced by their differentiation state, as well as whether enforcing asymmetric cell division (ACD) rates would have an impact on T cell differentiation and memory formation. Using the murine LCMV infection model, we established a correlation between cell stemness and the ability of CD8+ T cells to undergo ACD. Transient mTOR inhibition was proven to increase ACD rates in naïve and memory cells and to install this ability in exhausted CD8+ T cells. Functionally, enforced ACD correlated with increased memory potential, leading to more efficient recall response and viral control upon acute or chronic LCMV infection. Moreover, transient mTOR inhibition also increased ACD rates in human CD8+ T cells. Transcriptional profiling revealed that progenies emerging from enforced ACD exhibited more pronounced early memory signatures, which functionally endowed these cells with better survival in the absence of antigen exposure and more robust homing to secondary lymphoid organs, providing critical access to survival niches. Our data provide important insights into how ACD can improve long-term survival and function of T cells and open new perspectives for vaccination and adoptive T cell transfer therapies.
Cytomegalovirus (CMV) infection induces an atypical CD8 T cell response, termed inflationary, that is characterised by accumulation and maintenance of high numbers of effector memory like cells in circulation and peripheral tissues—a feature being successfully harnessed for vaccine purposes. Although stability of this population depends on recurrent antigen encounter, the requirements for prolonged survival in peripheral tissues remain unknown. Here, we reveal that murine CMV-specific inflationary CD8 T cells are maintained in an antigen-independent manner and have a half-life of 12 weeks in the lung tissue. This half-life is drastically longer than the one of phenotypically comparable inflationary effector cells. IL-15 alone, and none of other common γ-cytokines, was crucial for survival of inflationary cells in peripheral organs. IL-15, mainly produced by non-hematopoietic cells in lung tissue and being trans-presented, promoted inflationary T cell survival by increasing expression of Bcl-2. These results indicate that inflationary CD8 T cells are not just simply effector-like cells, rather they share properties of both effector and memory CD8 T cells and they appear to be long-lived cells compared to the effector cells from acute virus infections.
Besides their function in recognizing cancerous and virally infected cells, natural killer (NK) cells have the potential to shape adaptive immune responses. However, the mechanisms employed by NK cells to negatively regulate virus-specific CD8 T cell responses remain to be fully defined. Using activating receptor natural cytotoxicity receptor (NCR) 1 deficient (NCR1 gfp/gfp ) mice, we found increased numbers of virus-specific CD8 T cells, leading to enhanced virus control during acute LCMV infection. Furthermore, virus-specific CD8 T cells were more activated in the absence of NCR1, resulting in exacerbated immunopathology, documented by weight loss, and superior virus control early during chronic LCMV infection. Transfer experiments of virus-specific CD8 T cells into NCR1 deficient hosts revealed a direct cross talk between NK and CD8 T cells. Studies on the splenic microarchitecture revealed pronounced disorganization of T cells in infected NCR1 gfp/gfp mice, resulting in enhanced immunopathology and disruption of the T cell niche upon chronic LCMV infection. Our data show a novel pathway employed by NK cells to regulate antiviral CD8 T cell responses, namely direct recognition and elimination of activated CD8 T cells via NCR1 early during infection to protect the host from an overshooting T cell response.
Chronic viral infections are widespread among humans, with ∼8–12 chronic viral infections per individual, and there is epidemiological proof that these impair heterologous immunity. We studied the impact of chronic LCMV infection on the phenotype and function of memory bystander CD8+ T cells. Active chronic LCMV infection had a profound effect on total numbers, phenotype, and function of memory bystander T cells in mice. The phenotypic changes included up-regulation of markers commonly associated with effector and exhausted cells and were induced by IL-6 in a STAT1-dependent manner in the context of chronic virus infection. Furthermore, bystander CD8 T cell functions were reduced with respect to their ability to produce inflammatory cytokines and to undergo secondary expansion upon cognate antigen challenge with major cell-extrinsic contributions responsible for the diminished memory potential of bystander CD8+ T cells. These findings open new perspectives for immunity and vaccination during chronic viral infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.