Driving a spin‐logic circuit requires the production of a large output signal by spin‐charge interconversion in spin‐orbit readout devices. This should be possible by using topological insulators, which are known for their high spin‐charge interconversion efficiency. However, high‐quality topological insulators have so far only been obtained on a small scale, or with large scale deposition techniques that are not compatible with conventional industrial deposition processes. The nanopatterning and electrical spin injection into these materials have also proven difficult due to their fragile structure and low spin conductance. The fabrication of a spin‐orbit readout device from the topological insulator Sb2Te3 deposited by large‐scale industrial magnetron sputtering on SiO2 is presented. Despite a modification of the Sb2Te3 layer structural properties during the device nanofabrication, a sizeable output voltage is measured that can be unambiguously ascribed to a spin‐charge interconversion process. The results pave the way for the integration of layered van der Waals materials in spin‐logic devices.
We investigate signal propagation in a quantum field simulator of the Klein–Gordon model realized by two strongly coupled parallel one-dimensional quasi-condensates. By measuring local phononic fields after a quench, we observe the propagation of correlations along sharp light-cone fronts. If the local atomic density is inhomogeneous, these propagation fronts are curved. For sharp edges, the propagation fronts are reflected at the system’s boundaries. By extracting the space-dependent variation of the front velocity from the data, we find agreement with theoretical predictions based on curved geodesics of an inhomogeneous metric. This work extends the range of quantum simulations of nonequilibrium field dynamics in general space–time metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.