Connected and Autonomous Vehicles (CAVs) rely on Global Navigation Satellite Systems (GNSS), e.g., the Global Positioning System (GPS), for the provision of accurate location information for various functionalities including Vehicle-to-Vehicle/Infrastructure (V2V/V2I) communication and self-navigation. However, GNSSbased location awareness is prone to spoofing attacks, where the attacker generates counterfeit satellite signals. This in turn poses a serious threat to the CAV, e.g., car, drone, etc., as well as the surrounding entities. Thus, this threat needs to be detected reliably and mitigated timely to prevent undesired consequences (e.g., damages, casualties, etc.). To this end, this work proposes a location verification solution that leverages in-vehicle sensor readings (e.g., accelerometer, etc.) and Signals of Opportunity (SoO), as an alternative source of location information. In particular, the multimodal sensor data with SoO location measurements are fused by means of a Kalman filter and the estimated fusion-based location is used to verify the location output of the GPS receiver. In case the GPS location deviates considerably from the fusion-based location, then a location spoofing attack is ascertained. Preliminary experimental results with real GPS and sensor data collected with a drone demonstrate the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.