Grafts aside, current strategies employed to overcome bone loss still fail to reproduce native tissue physiology. Among the emerging bioprinting strategies, Laser-Assisted Bioprinting (LAB) offers very high resolution, allowing designing micrometric patterns in a contactless manner, providing a reproducible tool to test ink formulation. To this date, no LAB associated ink succeeded to provide a reproducible ad integrum bone regeneration on a murine calvaria critical size defect model. Using the CE approved BioRoot RCS® as a mineral addition to a collagen-enriched ink compatible with LAB, the present study describes the process of the development of a solidifying tricalcium silicate-based ink as a new bone repair promoting substrates in a LAB model. This ink formulation was mechanically characterized by rheology to adjust it for LAB. Printed aside Stromal Cells from Apical Papilla (SCAPs), this ink demonstrated a great cytocompatibility, with significant in vitro positive impact upon cell motility, and an early osteogenic differentiation response in the absence of another stimulus. Results indicated that the in vivo application of this new ink formulation to regenerate critical size bone defect tends to promote the formation of bone volume fraction without affecting the vascularization of the neo-formed tissue. The use of LAB techniques with this ink failed to demonstrate a complete bone repair, whether SCAPs were printed or not of at its direct proximity. The relevance of the properties of this specific ink formulation would therefore rely on the quantity applied in situ as a defect filler rather than its cell modulation properties observed in vitro. For the first time, a tricalcium silicate-based printed ink, based on rheological analysis, was characterized in vitro and in vivo, giving valuable information to reach complete bone regeneration through formulation updates. This LAB-based process could be generalized to normalize the characterization of candidate ink for bone regeneration.
We present here the data showing, in standard cultures exposed to atmospheric O 2 concentration, that alpha-tocopherol acetate (α-TOA) has a positive impact on primitive cells inside mesenchymal stromal cell (MstroC) population, by maintaining their proliferative capacity. α-TOA decreases the O 2 consumption rate of MStroC probably by impacting respiratory chain complex II activity. This action, however, is not associated with a compensatory increase in glycolysis activity, in spite of the fact that the degradation of HIF-1α was decreased in presence of α-TOA. This is in line with a moderate enhancement of mtROS upon α-TOA treatment. However, the absence of glycolysis stimulation implies the inactivity of HIF-1α which might -if it were active -be related to the maintenance of stemness. It should be stressed that α-TOA might act directly on the gene expression as well as the mtROS themselves, which remains to be elucidated.
Alpha tocopherol acetate (αTOA) is an analogue of alpha tocopherol (αTOC) that exists in the form of an injectable drug. In the context of the metabolic hypothesis of stem cells, we studied the impact of αTOA on the metabolic energetic profile and functional properties of hematopoietic stem and progenitor cells. In ex vivo experiments performed on cord blood CD34+ cells, we found that αTOA effectively attenuates oxidative phosphorylation without affecting the glycolysis rate. This effect concerns complex I and complex II of the mitochondrial respiratory chain and is related to the relatively late increase (3 days) in ROS (Reactive Oxygen Species). The most interesting effect was the inhibition of Hypoxia-Inducible Factor (HIF)-2α (Hexpression, which is a determinant of the most pronounced biological effect—the accumulation of CD34+ cells in the G0 phase of the cell cycle. In parallel, better maintenance of the primitive stem cell activity was revealed by the expansion seen in secondary cultures (higher production of colony forming cells (CFC) and Severe Combined Immunodeficiency-mice (scid)-repopulating cells (SRC)). While the presence of αTOA enhanced the maintenance of Hematopoietic Stem Cells (HSC) and contained their proliferation ex vivo, whether it could play the same role in vivo remained unknown. Creating αTOC deficiency via a vitamin E-free diet in mice, we found an accelerated proliferation of CFC and an expanded compartment of LSK (lineagenegative Sca-1+cKit+) and SLAM (cells expressing Signaling Lymphocytic Activation Molecule family receptors) bone marrow cell populations whose in vivo repopulating capacity was decreased. These in vivo data are in favor of our hypothesis that αTOC may have a physiological role in the maintenance of stem cells. Taking into account that αTOC also exhibits an effect on proliferative capacity, it may also be relevant for the ex vivo manipulation of hematopoietic stem cells. For this purpose, low non-toxic doses of αTOA should be used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.