Objectives: To determine the risk of SARS-CoV-2 transmission by aerosols, to provide evidence on the rational use of masks, and to discuss additional measures important for the protection of healthcare workers from COVID-19. Methods: Literature review and expert opinion. Short conclusion: SARS-CoV-2, the pathogen causing COVID-19, is considered to be transmitted via droplets rather than aerosols, but droplets with strong directional airflow support may spread further than 2 m. High rates of COVID-19 infections in healthcare-workers (HCWs) have been reported from several countries. Respirators such as filtering face piece (FFP) 2 masks were designed to protect HCWs, while surgical masks were originally intended to protect patients (e.g., during surgery). Nevertheless, high quality standard surgical masks (type II/IIR according to European Norm EN 14683) appear to be as effective as FFP2 masks in preventing droplet-associated viral infections of HCWs as reported from influenza or SARS. So far, no head-to-head trials with these masks have been published for COVID-19. Neither mask type completely prevents transmission, which may be due to inappropriate handling and alternative transmission pathways. Therefore, compliance with a bundle of infection control measures including thorough hand hygiene is key. During high-risk procedures, both droplets and aerosols may be produced, reason why respirators are indicated for these interventions.
Pseudomonas aeruginosa is a leading cause of nosocomial infections. The risk of emergence of antibiotic resistance may vary with different antibiotic treatments. To compare the risks of emergence of resistance associated with four antipseudomonal agents, ciprofloxacin, ceftazidime, imipenem, and piperacillin, we conducted a cohort study, assessing relative risks for emergence of resistantP. aeruginosa in patients treated with any of these drugs. A total of 271 patients (followed for 3,810 days) with infections due to P. aeruginosa were treated with the study agents. Resistance emerged in 28 patients (10.2%). Adjusted hazard ratios for the emergence of resistance were as follows: ceftazidime, 0.7 (P = 0.4); ciprofloxacin, 0.8 (P = 0.6); imipenem, 2.8 (P = 0.02); and piperacillin, 1.7 (P = 0.3). Hazard ratios for emergence of resistance to each individual agent associated with treatment with the same agent were as follows: ceftazidime, 0.8 (P = 0.7); ciprofloxacin, 9.2 (P = 0.04); imipenem, 44 (P = 0.001); and piperacillin, 5.2 (P= 0.01). We concluded that there were evident differences among antibiotics in the likelihood that their use would allow emergence of resistance in P. aeruginosa. Ceftazidime was associated with the lowest risk, and imipenem had the highest risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.