Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
The easily recognised genus Otidea is subjected to numerous problems in species identification. A number of old names have undergone various interpretations, materials from different continents have not been compared and misidentifications occur commonly. In this context, Otidea is monographed, based on our multiple gene phylogenies assessing species boundaries and comparative morphological characters (see Hansen & Olariaga 2015). All names combined in or synonymised with Otidea are dealt with. Thirty-three species are treated, with full descriptions and colour illustrations provided for 25 of these. Five new species are described, viz. O. borealis, O. brunneoparva, O. oregonensis, O. pseudoleporina and O. subformicarum. Otidea cantharella var. minor and O. onotica var. brevispora are elevated to species rank. Otideopsis kaushalii is combined in the genus Otidea. A key to the species of Otidea is given. An LSU dataset containing 167 sequences (with 44 newly generated in this study) is analysed to place collections and determine whether the named Otidea sequences in GenBank were identified correctly. Fourty-nine new ITS sequences were generated in this study. The ITS region is too variable to align across Otidea, but had low intraspecific variation and it aided in species identifications. Thirty type collections were studied, and ITS and LSU sequences are provided for 12 of these. A neotype is designated for O. cantharella and epitypes for O. concinna, O. leporina and O. onotica, along with several lectotypifications. The apothecial colour and shape, and spore characters are important for species identification. We conclude that to distinguish closely related or morphologically similar species, a combination of additional features are needed, i.e. the shape of the paraphyses, ectal excipulum structure, types of ectal excipulum resinous exudates and their reactions in Melzer’s reagent and KOH, tomentum and basal mycelium colours and exudates. The KOH reaction of excipular resinous exudates and basal mycelium are introduced as novel taxonomic characters.
The genus Morchella has gone through turbulent taxonomic treatments. Although significant progress in Morchella systematics has been achieved in the past decade, several problems remain unresolved and taxonomy in the genus is still in flux. In late 2019, a paper published in the open-access journal Scientific Reports raised serious concerns about the taxonomic stability of the genus, but also about the future of academic publishing. The paper, entitled "High diversity of Morchella and a novel lineage of the esculenta clade from the north Qinling Mountains revealed by GCPSR-based study" by Phanpadith and colleagues, suffered from gross methodological errors, included false results and artifactual phylogenies, had misapplied citations throughout, and proposed a new species name invalidly. Although the paper was eventually retracted by Scientific Reports in 2021, the fact that such an overtly flawed and scientifically unsound paper was published in a high-ranked Q1 journal raises alarming questions about quality controls and safekeeping procedures in scholarly publishing. Using this paper as a case study, we provide a critical review on the pitfalls of Morchella systematics followed by a series of recommendations for the delimitation of species, description of taxa, and ultimately for a sustainable taxonomy in Morchella. Problems and loopholes in the academic publishing system are also identified and discussed, and additional quality controls in the pre-and post-publication stages are proposed.
Several taxons belonging to the genus Cordyceps Fr. (Ascomycota, Clavicipitaceae ) are studied in detail, on the taxonomical level on the base of recent or older material, including certain types. Cordyceps ditmarii is rehabilitated at the specific rank. Several anamorphic stages are also presented ; two new species are created in the genera Hymenostilbe and Polycephalomyces ; Isaria sphecophila is combined in the genus Hirsutella.
Deuxième partie du catalogue des Ascomycètes récoltés dans le département de la Loire, correspondant aux espèces appartenant aux classes Leotiomycetes, Orbiliomycetes et proches, anciennement nommées discomycètes inoperculés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.