In this paper, we present a generalized polyphase representation for Continuous Phase Modulation (CPM) signals suited to the detection over frequency-selective channels. We first develop two different equalizers based on this representation and relate them to the State of Art. We also derive a Least Squares (LS) channel estimation and an improved LS estimation using a priori on the channel. Simulation results show the equivalence between existing equalizers and also show that our channel estimation leads only to a small degradation in term of Bit Error Rate (BER) in the case of an aeronautical communication over a satellite link.
The Transport layer, designed for old networking contexts and now obsolete applications requirements, is inefficient. This paper discusses the reasons behind this inefficiency and the obstacles to the evolution of Transport protocols. The discussion is then extended to derive new requirements for the Transport layer, both functional and architectural, in order to ensure optimal performances in all current and future contexts. To meet these new requirements, a novel architectural design of the Internet Transport layer is proposed following a service-oriented and a component-based approach. The proposed solution allows for optimization of the Transport service performance, facilitation of its utilization, and is aimed at allowing the integration of new services as needed.
In this paper, we present a new data-aided carrier-recovery method for Continuous Phase Modulation (CPM) signals over frequency-selective channels. We first present a linear model of the received signal based on Mengali representation over selective channels and show how to use it to perform joint channel and carrier-frequency estimation. We also derive a low-complexity version of the estimator. Simulation results show that this method performs better than the optimal method suited to the Additive White Gaussian Noise (AWGN) channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.