Cross-talk between NK cells and dendritic cells (DCs) is critical for the potent therapeutic response to dsRNA, but the receptors involved remained controversial. We show in this paper that two dsRNAs, polyadenylic-polyuridylic acid and polyinosinic-polycytidylic acid [poly(I:C)], similarly engaged human TLR3, whereas only poly(I:C) triggered human RIG-I and MDA5. Both dsRNA enhanced NK cell activation within PBMCs but only poly(I:C) induced IFN-γ. Although myeloid DCs (mDCs) were required for NK cell activation, induction of cytolytic potential and IFN-γ production did not require contact with mDCs but was dependent on type I IFN and IL-12, respectively. Poly(I:C) but not polyadenylic-polyuridylic acid synergized with mDC-derived IL-12 for IFN-γ production by acting directly on NK cells. Finally, the requirement of both TLR3 and Rig-like receptor (RLR) on mDCs and RLRs but not TLR3 on NK cells for IFN-γ production was demonstrated using TLR3- and Cardif-deficient mice and human RIG-I–specific activator. Thus, we report the requirement of cotriggering TLR3 and RLR on mDCs and RLRs on NK cells for a pathogen product to induce potent innate cell activation.
Antibody-drug conjugates (ADCs) have demonstrated clinical benefits that have led to the recent FDA approval of KADCYLA and ADCETRIS. Most ADCs that are currently in clinical use or development, including ADCETRIS, are produced by chemical conjugation of a toxin via either lysine or cysteine residues, inevitably leading to heterogeneous products with variable drug-to-antibody ratios (DARs). Here, we describe the in vitro and in vivo characterization of four novel ADCs that are based on the anti-CD30 antibody cAC10, which has the same polypeptide backbone as ADCETRIS, and compare the results with the latter. Bacterial transglutaminase (BTG) was exploited to site-specifically conjugate derivatives of monomethyl auristatin E (all comprising a cleavable linker) to the glutamine at positions 295 and 297 of cAC10, thereby yielding homogeneous ADCs with a DAR of 4. In vitro cell toxicity experiments using two different CD30-positive cell lines (Karpas 299 and Raji-CD30(+)) revealed comparable EC50 values for ADCETRIS (1.8 ± 0.4 and 3.6 ± 0.6 ng/mL, respectively) and the four cAC10-based ADCs (2.0 ± 0.4 to 4.9 ± 1.0 ng/mL). Quantitative time-dependent in vivo biodistribution studies (3-96 h p.i.) in normal and xenografted (Karpas 299 cells) SCID mice were performed with a selected (125)I-radioiodinated cAC10 ADC and compared with that of (125)I-ADCETRIS. The chemo-enzymatically conjugated, radioiodinated ADC showed higher tumor uptake (17.84 ± 2.2% ID/g 24 h p.i.) than (125)I-ADCETRIS (10.5 ± 1.8% ID/g 24 h p.i.). Moreover, (125)I-ADCETRIS exhibited higher nontargeted liver and spleen uptake. In line with these results, the maximum tolerated dose of the BTG-coupled ADC (>60 mg/kg) was significantly higher than that of ADCETRIS (18 mg/kg) in rats. These results suggest that homogeneous ADCs display improved pharmacokinetics and better therapeutic indexes compared to those of chemically modified ADCs with variable DARs.
Advanced cutaneous T-cell lymphoma (CTCL) remains an unmet medical need, which lacks effective targeted therapies. In this study, we report the development of IPH4102, a humanized monoclonal antibody that targets the immune receptor KIR3DL2, which is widely expressed on CTCL cells but few normal immune cells. Potent antitumor properties of IPH4102 were documented in allogeneic human CTCL cells and a mouse model of KIR3DL2 þ disease. IPH4102 antitumor activity was mediated by antibody-dependent cell cytotoxicity and phagocytosis. IPH4102 improved survival and reduced tumor growth in mice inoculated with KIR3DL2 þ tumors.Ex vivo efficacy was further evaluated in primary S ezary patient cells, sorted natural killer-based autologous assays, and direct spiking into S ezary patient peripheral blood mononuclear cells. In these settings, IPH4102 selectively and efficiently killed primary S ezary cells, including at unfavorable effector-to-target ratios characteristic of unsorted PBMC. Together, our results offer preclinical proof of concept for the clinical development of IPH4102 to treat patients with advanced CTCL. Cancer Res; 74(21); 6060-70. Ó2014 AACR.
Background: MICA and MICB are tightly regulated stress-induced proteins that trigger the immune system by binding to the activating receptor NKG2D on cytotoxic lymphocytes. MICA and MICB are highly polymorphic molecules with prevalent expression on several types of solid tumors and limited expression in normal/healthy tissues, making them attractive targets for therapeutic intervention. Methods: We have generated a series of anti-MICA and MICB cross-reactive antibodies with the unique feature of binding to the most prevalent isoforms of both these molecules. Results: The anti-MICA and MICB antibody MICAB1, a human IgG1 Fc-engineered monoclonal antibody (mAb), displayed potent antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) of MICA/B-expressing tumor cells in vitro. However, it showed insufficient efficiency against solid tumors in vivo, which prompted the development of antibody-drug conjugates (ADC). Indeed, optimal tumor control was achieved with MICAB1-ADC format in several solid tumor models, including patient-derived xenografts (PDX) and carcinogen-induced tumors in immunocompetent MICAgen transgenic mice. Conclusions: These data indicate that MICA and MICB are promising targets for cytotoxic immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.