It is important that systems that exhibit proactive behaviour do so in a way that does not surprise or frustrate the user. Consequently, it is desirable for such systems to be both personalised and designed in such a way as to enable the user to scrutinise her user model (part of which should hold the rules describing the behaviour of the system). This article describes on-going work to investigate the design of a prototype system that can learn a given user's behaviour in an office environment in order to use the inferred rules to populate a user model and support appropriate proactive behaviour (e.g. turning on the user's fan under appropriate conditions). We explore the tension between user control and proactive services and consider issues related to the design of appropriate transparency with a view to supporting user comprehensibility of system behaviour. To this end, our system enables the user to scrutinise and possibly over-ride the 'IF-THEN' rules held in her user model. The system infers these rules from the context history (effectively a data set generated using a variety of sensors) associated with the user by using a fuzzy-decisiontree-based algorithm that can provide a confidence level for each rule in the user model. The evolution of the system has been guided by feedback from a number of real-life users in a university department. A questionnaire study has yielded supplementary results concerning the extent to which the approach taken meets users' expectations and requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.