Sequential data is generated in many domains of science and technology. Although many studies have been carried out for sequence classification in the past decade, the problem is still a challenge; particularly for pattern-based methods. We identify two important issues related to pattern-based sequence classification which motivate the present work: the curse of parameter tuning and the instability of common interestingness measures. To alleviate these issues, we suggest a new approach and framework for mining sequential rule patterns for classification purpose. We introduce a space of rule pattern models and a prior distribution defined on this model space. From this model space, we define a Bayesian criterion for evaluating the interest of sequential patterns. We also develop a parameter-free algorithm to efficiently mine sequential patterns from the model space. Extensive experiments show that (i) the new criterion identifies interesting and robust patterns, (ii) the direct use of the mined rules as new features in a classification process demonstrates higher inductive performance than the state-of-the-art sequential pattern based classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.