Although the orbitofrontal cortex (OFC) has been studied intensely for decades, its precise functions have remained elusive. We recently hypothesized that the OFC contains a “cognitive map” of task space in which the current state of the task is represented, and that this representation is especially critical for behavior when states are unobservable from sensory input. To test this idea, here we apply pattern-classification techniques to neuroimaging data from humans performing a decision-making task with 16 states. We show that unobservable task states can be decoded from activity in OFC, and that decoding accuracy is related to task performance and the occurrence of individual behavioral errors. Moreover, similarity between the neural representations of consecutive states correlates with behavioral accuracy in corresponding state transitions. These results support the idea that OFC represents a cognitive map of task space and establish the feasibility of decoding state representations in humans using non-invasive neuroimaging.
Sequential neural activity patterns related to spatial experiences are “replayed” in the hippocampus of rodents during rest. We investigated whether replay of nonspatial sequences can be detected noninvasively in the human hippocampus. Participants underwent functional magnetic resonance imaging (fMRI) while resting after performing a decision-making task with sequential structure. Hippocampal fMRI patterns recorded at rest reflected sequentiality of previously experienced task states, with consecutive patterns corresponding to nearby states. Hippocampal sequentiality correlated with the fidelity of task representations recorded in the orbitofrontal cortex during decision-making, which were themselves related to better task performance. Our findings suggest that hippocampal replay may be important for building representations of complex, abstract tasks elsewhere in the brain and establish feasibility of investigating fast replay signals with fMRI.
We examined whether older adults differ from younger adults in how they learn from rewarding and aversive outcomes. Human participants were asked to either learn to choose actions that lead to monetary reward or learn to avoid actions that lead to monetary losses. To examine age differences in the neurophysiological mechanisms of learning, we applied a combination of computational modeling and fMRI. Behavioral results showed age-related impairments in learning from reward but not in learning from monetary losses. Consistent with these results, we observed age-related reductions in BOLD activity during learning from reward in the ventromedial PFC. Furthermore, the model-based fMRI analysis revealed a reduced responsivity of the ventral striatum to reward prediction errors during learning in older than younger adults. This age-related reduction in striatal sensitivity to reward prediction errors may result from a decline in phasic dopaminergic learning signals in the elderly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.