Virtual reality (VR) is a promising tool to promote motor (re)learning in healthy users and brain-injured patients. However, in current VR-based motor training, movements of the users performed in a three-dimensional space are usually visualized on computer screens, televisions, or projection systems, which lack depth cues (2D screen), and thus, display information using only monocular depth cues. The reduced depth cues and the visuospatial transformation from the movements performed in a three-dimensional space to their two-dimensional indirect visualization on the 2D screen may add cognitive load, reducing VR usability, especially in users suffering from cognitive impairments. These 2D screens might further reduce the learning outcomes if they limit users’ motivation and embodiment, factors previously associated with better motor performance. The goal of this study was to evaluate the potential benefits of more immersive technologies using head-mounted displays (HMDs). As a first step towards potential clinical implementation, we ran an experiment with 20 healthy participants who simultaneously performed a 3D motor reaching and a cognitive counting task using: (1) (immersive) VR (IVR) HMD, (2) augmented reality (AR) HMD, and (3) computer screen (2D screen). In a previous analysis, we reported improved movement quality when movements were visualized with IVR than with a 2D screen. Here, we present results from the analysis of questionnaires to evaluate whether the visualization technology impacted users’ cognitive load, motivation, technology usability, and embodiment. Reports on cognitive load did not differ across visualization technologies. However, IVR was more motivating and usable than AR and the 2D screen. Both IVR and AR rea ched higher embodiment level than the 2D screen. Our results support our previous finding that IVR HMDs seem to be more suitable than the common 2D screens employed in VR-based therapy when training 3D movements. For AR, it is still unknown whether the absence of benefit over the 2D screen is due to the visualization technology per se or to technical limitations specific to the device.
In immersive virtual reality, the own body is often visually represented by an avatar. This may induce a feeling of body ownership over the virtual limbs. Importantly, body ownership and the motor system share neural correlates. Yet, evidence on the functionality of this neuroanatomical coupling is still inconclusive. Findings from previous studies may be confounded by the congruent vs. incongruent multisensory stimulation used to modulate body ownership. This study aimed to investigate the effect of body ownership and congruency of information on motor performance in immersive virtual reality. We aimed to modulate body ownership by providing congruent vs. incongruent visuo-tactile stimulation (i.e., participants felt a brush stroking their real fingers while seeing a virtual brush stroking the same vs. different virtual fingers). To control for congruency effects, unimodal stimulation conditions (i.e., only visual or tactile) with hypothesized low body ownership were included. Fifty healthy participants performed a decision-making (pressing a button as fast as possible) and a motor task (following a defined path). Body ownership was assessed subjectively with established questionnaires and objectively with galvanic skin response (GSR) when exposed to a virtual threat. Our results suggest that congruency of information may decrease reaction times and completion time of motor tasks in immersive virtual reality. Moreover, subjective body ownership is associated with faster reaction times, whereas its benefit on motor task performance needs further investigation. Therefore, it might be beneficial to provide congruent information in immersive virtual environments, especially during the training of motor tasks, e.g., in neurorehabilitation interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.