Peripersonal space can be considered as the interface between the body and the environment, where objects can be reached and which may serve as a reference for the central nervous system with regard to possible actions. Peripersonal space can be studied by assessing the perception of the reachable space, which depends on the body's physical characteristics (i.e., arm length) since their modifications have been shown to be associated with a change in peripersonal space representation. However, it remains unclear whether the representation of limb dynamics also influences the representation of peripersonal space. The present study investigated this issue by perturbing the force-field environment. A novel force field was created by rotating an experimental platform where participants were seated while they reached towards visual targets. Manual reaching performance was assessed before, during and after platform rotation. Crucially, perception of peripersonal space was also assessed, with reachability judgments, before and after platform rotation. As expected, sensori-motor adaptation to the perturbed force field was observed. Our principal finding is that peripersonal space was systematically perceived as closer to the body after force-field adaptation. Two control experiments showed no significant difference in reachability judgments when no reaching movements were performed during platform rotation or when reaching movements were performed without platform rotation, suggesting that the change in perceived peripersonal space resulted from exposure to new limb dynamics. Overall, our findings show that sensori-motor adaptation of reaching movements to a new force field, which does not directly influence arm length but results in the updating of the arm's internal model of limb dynamics, interacts with the perceptual categorisation of space, supporting a motor contribution to the representation of peripersonal space.
Most of our daily interactions with objects occur in the space immediately surrounding the body, i.e. the peripersonal space. The peripersonal space is characterized by multisensory processing of objects which are coded in terms of potential actions, specifying for instance whether objects are within reach or not. Our recent work suggested a link between exposure to a new force field, which changed the effector dynamics, and the representation of peripersonal space. To better understand the interplay between the plasticity of the motor system and peripersonal space representation, the present study examined whether changing the direction of the force field specifically modified the perception of action boundaries. Participants seated at the centre of an experimental platform estimated visual targets' reachability before and after adapting upper-limb reaching movements to the Coriolis force generated by either clockwise or counterclockwise rotation of the platform (120°/s). Opposite spatial after-effects were observed, showing that force-field adaptation depends on the direction of the rotation. In contrast, perceived action boundaries shifted leftward following exposure to the new force field, regardless of the direction of the rotation. Overall, these findings support the idea that abrupt exposure to a new force field results in a direction-specific updating of the central sensorimotor representations underlying the control of arm movements. Abrupt exposure to a new force field also results in a nonspecific shift in the perception of action boundaries which is consistent with a contraction of the peripersonal space and could be related to its protective role. Such effect, which does not appear to be related to state anxiety, and could be related to theits protective role of the peripersonal space in response to the uncertainty of the sensorimotor system induced by the abrupt modification of the environment.
The space immediately surrounding the body is crucial for the organization of voluntary motor actions and seems to be functionally represented in the brain according to motor capacities. However, despite extensive research, little is known about how the representation of peripersonal space is adjusted to new action capacities. Abrupt exposure to a new force field has been shown to cause the representation of peripersonal space to shrink, possibly reflecting a conservative spatial strategy triggered by consciously-perceived motor errors. The present study assessed whether the representation of peripersonal space is influenced by gradual exposure of reaching movements to a new force field, produced by a stepwise acceleration of a rotating platform. We hypothesized that such gradual exposure would induce progressive sensorimotor adaptation to motor errors, albeit too small to be consciously perceived. In contrast, we hypothesized that reachability judgments, used as a proxy of peripersonal space representation, would not be significantly affected. Results showed that gradual exposure to Coriolis force produced a systematic after-effect on reaching movements but no significant change in reachability judgments. We speculate that the conscious experience of large motor errors may influence the updating of the representation of peripersonal space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.