Mangrove forests grow in the estuaries of 124 tropical countries around the world. Because in-situ monitoring of mangroves is difficult and time-consuming, remote sensing technologies are commonly used to monitor these ecosystems. Landsat satellites have provided regular and systematic images of mangrove ecosystems for over 30 years, yet researchers often cite budget and infrastructure constraints to justify the underuse this resource. Since 2001, over 50 studies have used Landsat or ASTER imagery for mangrove monitoring, and most focus on the spatial extent of mangroves, rarely using more than five images. Even after the Landsat archive was made free for public use, few studies used more than five images, despite the clear advantages of using more images (e.g. lower signal-to-noise ratios). The main argument of this paper is that, with freely available imagery and high performance computing facilities around the world, it is up to researchers to acquire the necessary programming skills to use these resources. Programming skills allow researchers to automate repetitive and time-consuming tasks, such as image acquisition and processing, consequently reducing up to 60% of the time dedicated to these activities. These skills also help scientists to review and re-use algorithms, hence making mangrove research more agile. This paper contributes to the debate on why scientists need to learn to program, not only to challenge prevailing approaches to mangrove research, but also to expand the temporal and spatial extents that are commonly used for mangrove research.
While coral reef ecosystems hold immense biological, ecological, and economic value, frequent anthropogenic and environmental disturbances have caused these ecosystems to decline globally. Current coral reef monitoring methods include in situ surveys and analyzing remotely sensed data from satellites. However, in situ methods are often expensive and inconsistent in terms of time and space. High-resolution satellite imagery can also be expensive to acquire and subject to environmental conditions that conceal target features. High-resolution imagery gathered from remotely piloted aircraft systems (RPAS or drones) is an inexpensive alternative; however, processing drone imagery for analysis is time-consuming and complex. This study presents the first semi-automatic workflow for drone image processing with Google Earth Engine (GEE) and free and open source software (FOSS). With this workflow, we processed 230 drone images of Heron Reef, Australia and classified coral, sand, and rock/dead coral substrates with the Random Forest classifier. Our classification achieved an overall accuracy of 86% and mapped live coral cover with 92% accuracy. The presented methods enable efficient processing of drone imagery of any environment and can be useful when processing drone imagery for calibrating and validating satellite imagery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.