Digital twins are computational models that replicate the structure, behaviour and overall characteristics of a physical asset in the digital world. In the maritime domain, conventional approaches have relied on mathematical modeling (e.g., linearised equations of motion) and heavy computations for estimating ship resistance and propulsion, seakeeping and maneuverability and overall hull form optimization, treating the vessel as a point body. For instance, the ability to predict a vessel’s future track in confined or congested waters presents a significant challenge due to the fact that as time passes, these models often fall out of sync with their digital counterparts due to changes that happen to the ship (e.g., foulding affecting maneuverability). In addition to this, mostly due to computational resources required, in real world deployments models are simplified, thus reducing their overall prediction accuracy. In our work, we implement AI-enabled coupled abstractions of the asset-twin system, which rely on machine learning methods for constant learning of the evolving over time behavior of a vessel based on historical trip data and information related to vessel’s structure and loading capacity. The evaluation results indicate that the inclusion of vessel and journey specific information is beneficial for the predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.