Background: Bone age (BA) assessment performed by artificial intelligence (AI) is of growing interest due to improved accuracy, precision and time efficiency in daily routine. The aim of this study was to investigate the accuracy and efficiency of a novel AI software version for automated BA assessment in comparison to the Greulich-Pyle method. Methods: Radiographs of 514 patients were analysed in this retrospective study. Total BA was assessed independently by three blinded radiologists applying the GP method and by the AI software. Overall and genderspecific BA assessment results, as well as reading times of both approaches, were compared, while the reference BA was defined by two blinded experienced paediatric radiologists in consensus by application of the Greulich-Pyle method. Results: Mean absolute deviation (MAD) and root mean square deviation (RSMD) were significantly lower between AI-derived BA and reference BA (MAD 0.34 years, RSMD 0.38 years) than between reader-calculated BA and reference BA (MAD 0.79 years, RSMD 0.89 years; p < 0.001). The correlation between AI-derived BA and reference BA (r = 0.99) was significantly higher than between reader-calculated BA and reference BA (r = 0.90; p < 0.001). No statistical difference was found in reader agreement and correlation analyses regarding gender (p = 0.241). Mean reading times were reduced by 87% using the AI system. Conclusions: A novel AI software enabled highly accurate automated BA assessment. It may improve efficiency in clinical routine by reducing reading times without compromising the accuracy compared with the Greulich-Pyle method.
BackgroundThe ability to imitate the vocalizations of other organisms, a trait known as vocal learning, is shared by only a few organisms, including humans, where it subserves the acquisition of speech and language, and 3 groups of birds. In songbirds, vocal learning requires the coordinated activity of a set of specialized brain nuclei referred to as the song control system. Recent efforts have revealed some of the genes that are expressed in these vocal nuclei, however a thorough characterization of the transcriptional specializations of this system is still missing. We conducted a rigorous and comprehensive analysis of microarrays, and conducted a separate analysis of 380 genes by in situ hybridizations in order to identify molecular specializations of the major nuclei of the song system of zebra finches (Taeniopygia guttata), a songbird species.ResultsOur efforts identified more than 3300 genes that are differentially regulated in one or more vocal nuclei of adult male birds compared to the adjacent brain regions. Bioinformatics analyses provided insights into the possible involvement of these genes in molecular pathways such as cellular morphogenesis, intrinsic cellular excitability, neurotransmission and neuromodulation, axonal guidance and cela-to-cell interactions, and cell survival, which are known to strongly influence the functional properties of the song system. Moreover, an in-depth analysis of specific gene families with known involvement in regulating the development and physiological properties of neuronal circuits provides further insights into possible modulators of the song system.ConclusionOur study represents one of the most comprehensive molecular characterizations of a brain circuit that evolved to facilitate a learned behavior in a vertebrate. The data provide novel insights into possible molecular determinants of the functional properties of the song control circuitry. It also provides lists of compelling targets for pharmacological and genetic manipulations to elucidate the molecular regulation of song behavior and vocal learning.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4578-0) contains supplementary material, which is available to authorized users.
Objectives To evaluate the predictive value of volumetric bone mineral density (BMD) assessment of the lumbar spine derived from phantomless dual-energy CT (DECT)-based volumetric material decomposition as an indicator for the 2-year occurrence risk of osteoporosis-associated fractures. Methods L1 of 92 patients (46 men, 46 women; mean age, 64 years, range, 19–103 years) who had undergone third-generation dual-source DECT between 01/2016 and 12/2018 was retrospectively analyzed. For phantomless BMD assessment, dedicated DECT postprocessing software using material decomposition was applied. Digital files of all patients were sighted for 2 years following DECT to obtain the incidence of osteoporotic fractures. Receiver operating characteristic (ROC) analysis was used to calculate cut-off values and logistic regression models were used to determine associations of BMD, sex, and age with the occurrence of osteoporotic fractures. Results A DECT-derived BMD cut-off of 93.70 mg/cm3 yielded 85.45% sensitivity and 89.19% specificity for the prediction to sustain one or more osteoporosis-associated fractures within 2 years after BMD measurement. DECT-derived BMD was significantly associated with the occurrence of new fractures (odds ratio of 0.8710, 95% CI, 0.091–0.9375, p < .001), indicating a protective effect of increased DECT-derived BMD values. Overall AUC was 0.9373 (CI, 0.867–0.977, p < .001) for the differentiation of patients who sustained osteoporosis-associated fractures within 2 years of BMD assessment. Conclusions Retrospective DECT-based volumetric BMD assessment can accurately predict the 2-year risk to sustain an osteoporosis-associated fracture in at-risk patients without requiring a calibration phantom. Lower DECT-based BMD values are strongly associated with an increased risk to sustain fragility fractures. Key Points •Dual-energy CT–derived assessment of bone mineral density can identify patients at risk to sustain osteoporosis-associated fractures with a sensitivity of 85.45% and a specificity of 89.19%. •The DECT-derived BMD threshold for identification of at-risk patients lies above the American College of Radiology (ACR) QCT guidelines for the identification of osteoporosis (93.70 mg/cm3 vs 80 mg/cm3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.