The identification of easily measured, accurate diagnostic biomarkers for active tuberculosis (TB) will have a significant impact on global TB control efforts. Because of the host and pathogen complexities involved in TB pathogenesis, identifying a single biomarker that is adequately sensitive and specific continues to be a major hurdle. Our previous studies in models of TB demonstrated that exosomes, such as those released from infected macrophages, contain mycobacterial products, including many Mtb proteins. In this report, we describe the development of targeted proteomics assays employing multiplexed multiple reaction monitoring mass spectrometry (MRM-MS) in order to allow us to follow those proteins previously identified by western blot or shotgun mass spectrometry, and enhance biomarker discovery to include detection of Mtb proteins in human serum exosomes. Targeted MRM-MS assays were applied to exosomes isolated from human serum samples obtained from culture-confirmed active TB patients to detect 76 peptides representing 33 unique Mtb proteins. Our studies revealed the first identification of bacteria-derived biomarker candidates of active TB in exosomes from human serum. Twenty of the 33 proteins targeted for detection were found in the exosomes of TB patients, and included multiple peptides from 8 proteins (Antigen 85B, Antigen 85C, Apa, BfrB, GlcB, HspX, KatG, and Mpt64). Interestingly, all of these proteins are known mycobacterial adhesins and/or proteins that contribute to the intracellular survival of Mtb. These proteins will be included as target analytes in future validation studies as they may serve as markers for persistent active and latent Mtb infection. In summary, this work is the first step in identifying a unique and specific panel of Mtb peptide biomarkers encapsulated in exosomes and reveals complex biomarker patterns across a spectrum of TB disease states.
The tuberculin skin test, which involves monitoring the immune reaction to an injection of purified protein derivative (PPD), has been the most widely used method for detecting infection with Mycobacterium tuberculosis since its development in 1930s. Until recently, the molecular composition of PPD was unknown. This thwarted the discovery of improved skin testing reagents and drastically hindered efforts to define the mechanism of action. Proteomic evaluation of PPD combined with a detailed analysis in the guinea pig model of tuberculosis led to further definition of the molecular composition of PPD. This communication reviews the history and current status of PPD, in addition to describing candidate next‐generation PPD reagents, based on the use of an individual protein or protein cocktails.
Extracellular vesicles (EVs) are biomarkers and modifiers of human disease. EVs secreted by insulin-responsive tissues like skeletal muscle (SkM) and white adipose (WAT) contribute to metabolic health and disease but the relative abundance of EVs from these tissues has not been directly examined. Human Protein Atlas data and directly measuring EV secretion in mouse SkM and WAT using an ex vivo tissue explant model confirmed that SkM tissue secretes more EVs than WAT. Differences in EV secretion between SkM and WAT were not due to SkM contraction but may be explained by differences in tissue metabolic capacity. We next examined how many EVs secreted from SkM tissue ex vivo and in vivo are myofiber-derived. To do this, a SkM myofiber-specific dual fluorescent reporter mouse was created. Spectral flow cytometry revealed that SkM myofibers are a major source of SkM tissue-derived EVs ex vivo and EV immunocapture indicate that ~5% of circulating tetraspanin-positive EVs are derived from SkM myofibers in vivo. Our findings demonstrate that 1) SkM secretes more EVs than WAT, 2) many SkM tissue EVs are derived from SkM myofibers and 3) SkM myofiber-derived EVs reach the circulation in vivo. These findings advance our understanding of EV secretion between metabolically active tissues and provide direct evidence that SkM myofibers secrete EVs that can reach the circulation in vivo.
Tuberculosis (TB) is the deadliest infectious disease worldwide. One obstacle hindering the elimination of TB is our lack of understanding of host-pathogen interactions. Exosomes, naturally loaded with microbial molecules, are circulating markers of TB. Changes in the host protein composition of exosomes from Mycobacterium tuberculosis (Mtb)-infected cells have not been described, can contribute to our understanding of the disease process, and serve as a direct source of biomarkers or as capture targets to enrich for exosomes containing microbial molecules. Here, the protein composition of exosomes from Mtb-infected and uninfected THP-1-derived macrophages was evaluated by tandem-mass-spectrometry and differences in protein abundances were assessed. Our results show that infection with Mtb leads to significant changes in the protein composition of exosomes. Specifically, 41 proteins were significantly more abundant in exosomes from Mtb-infected cells; 63% of these were predicted to be membrane associated. Thus, we used a novel biotinylation strategy to verify protein localization, and confirmed the localization of some of these proteins in the exosomal membrane. Our findings reveal another important scenario where Mtb could be influencing changes in host cells that unveil new features of the host-pathogen interaction and may also be exploited as a source of biomarkers for TB.
Background Mycobacterium tuberculosis (Mtb) is the causative agent of Tuberculosis (TB), the number one cause of death due to an infectious disease. TB diagnosis is performed by microscopy, culture or PCR amplification of bacterial DNA, all of which require patient sputum or the biopsy of infected tissue. Detection of mycobacterial products in serum, as biomarkers of diagnosis or disease status would provide an improvement over current methods. Due to the low-abundance of mycobacterial products in serum, we have explored exosome enrichment to improve sensitivity. Mtb resides intracellularly where its secreted proteins have been shown to be packaged into host exosomes and released into the bloodstream. Exosomes can be readily purified assuring an enrichment of mycobacterial analytes from the complex mix of host serum proteins.MethodsMultiple reaction monitoring assays were optimized for the enhanced detection of 41 Mtb peptides in exosomes purified from the serum of individuals with TB. Exosomes isolated from the serum of healthy individuals was used to create and validate a unique data analysis algorithm and identify filters to reduce the rate of false positives, attributed to host m/z interference. The final optimized method was tested in 40 exosome samples from TB positive patients.ResultsOur enhanced methods provide limit of detection and quantification averaging in the low femtomolar range for detection of mycobacterial products in serum. At least one mycobacterial peptide was identified in 92.5% of the TB positive patients. Four peptides from the Mtb proteins, Cfp2, Mpt32, Mpt64 and BfrB, show normalized total peak areas significantly higher in individuals with active TB as compared to healthy controls; three of the peptides from these proteins have not previously been associated with serum exosomes from individuals with active TB disease. Some of the detected peptides were significantly associated with specific geographical locations, highlighting potential markers that can be linked to the Mtb strains circulating within each given region.ConclusionsAn enhanced MRM method to detect ultra-low abundance Mtb peptides in human serum exosomes is demonstrated, highlighting the potential of this methodology for TB diagnostic biomarker development.Electronic supplementary materialThe online version of this article (doi:10.1186/s12014-017-9156-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.