Familial Mediterranean fever (FMF) is an autoinflammatory disease caused by homozygous or compound heterozygous gain-of-function mutations in
MEFV
, encoding pyrin, an inflammasome protein. Heterozygous carrier frequencies for multiple
MEFV
mutations are high in several Mediterranean populations, suggesting that they confer selective advantage. Among 2,313 Turks, we found extended haplotype homozygosity flanking FMF-associated mutations, indicating evolutionarily recent positive selection of FMF-associated mutations. Two pathogenic pyrin variants independently arose >1,800 years ago. Mutant pyrin interacts less avidly with
Yersinia pestis
virulence factor YopM than wild type human pyrin, thereby attenuating YopM-induced IL-1β suppression. Relative to healthy controls, leukocytes from FMF patients harboring homozygous or compound heterozygous mutations and from asymptomatic heterozygous carriers released heightened IL-1β specifically in response to
Y. pestis
.
Y. pestis
-infected
Mefv
M680I/M680I
FMF knock-in mice exhibited IL-1-dependent increased survival relative to wild-type knock-in mice. Thus, FMF mutations that were positively selected in Mediterranean populations confer heightened resistance to
Y. pestis
.
B. cenocepacia
is often considered the most virulent species in the Bcc because of its close association with cepacia syndrome in addition to its capacity to cause chronic lung infections in CF patients (1). Prior to the current study, virulence factors of
B. cenocepacia
important for causing lethal disease had not been identified in a CF animal model of lung infection.
Persons with cystic fibrosis, starting in early life, have intestinal microbiome dysbiosis characterized in part by a decreased relative abundance of the genus Bacteroides. Bacteroides is a major producer of the intestinal short chain fatty acid (SCFA) propionate. We demonstrate here that CFTR-/- Caco-2 intestinal epithelial cells are responsive to the anti-inflammatory effects of propionate. Furthermore, Bacteroides isolates inhibit the IL-1β-induced inflammatory response of CFTR-/- Caco-2 intestinal epithelial cells and do so in a propionate-dependent manner. Bacteroides isolates also produce low levels of butyrate; this SCFA is positively correlated with inhibition of the inflammatory response. Finally, the introduction of Bacteroides-supplemented stool from infants with CF into the gut of CftrF508del mice results in an increase in propionate in the stool as well as the reduction in several systemic pro-inflammatory cytokines. Bacteroides supplementation also reduced the fecal relative abundance of E. coli, indicating a potential interaction between these two microbes, consistent with previous clinical studies. Together, our data indicate the important role of Bacteroides and Bacteroides-derived propionate in the context of the developing microbiome in infants and children with CF, which could help explain the observed gut-lung axis in CF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.