OBJECTIVETo describe trends of primary efficacy and safety outcomes of islet transplantation in type 1 diabetes recipients with severe hypoglycemia from the Collaborative Islet Transplant Registry (CITR) from 1999 to 2010.RESEARCH DESIGN AND METHODSA total of 677 islet transplant-alone or islet-after-kidney recipients with type 1 diabetes in the CITR were analyzed for five primary efficacy outcomes and overall safety to identify any differences by early (1999–2002), mid (2003–2006), or recent (2007–2010) transplant era based on annual follow-up to 5 years.RESULTSInsulin independence at 3 years after transplant improved from 27% in the early era (1999–2002, n = 214) to 37% in the mid (2003–2006, n = 255) and to 44% in the most recent era (2007–2010, n = 208; P = 0.006 for years-by-era; P = 0.01 for era alone). C-peptide ≥0.3 ng/mL, indicative of islet graft function, was retained longer in the most recent era (P < 0.001). Reduction of HbA1c and resolution of severe hypoglycemia exhibited enduring long-term effects. Fasting blood glucose stabilization also showed improvements in the most recent era. There were also modest reductions in the occurrence of adverse events. The islet reinfusion rate was lower: 48% by 1 year in 2007–2010 vs. 60–65% in 1999–2006 (P < 0.01). Recipients that ever achieved insulin-independence experienced longer duration of islet graft function (P < 0.001).CONCLUSIONSThe CITR shows improvement in primary efficacy and safety outcomes of islet transplantation in recipients who received transplants in 2007–2010 compared with those in 1999–2006, with fewer islet infusions and adverse events per recipient.
OBJECTIVEImpaired awareness of hypoglycemia (IAH) and severe hypoglycemic events (SHEs) cause substantial morbidity and mortality in patients with type 1 diabetes (T1D). Current therapies are effective in preventing SHEs in 50–80% of patients with IAH and SHEs, leaving a substantial number of patients at risk. We evaluated the effectiveness and safety of a standardized human pancreatic islet product in subjects in whom IAH and SHEs persisted despite medical treatment.RESEARCH DESIGN AND METHODSThis multicenter, single-arm, phase 3 study of the investigational product purified human pancreatic islets (PHPI) was conducted at eight centers in North America. Forty-eight adults with T1D for >5 years, absent stimulated C-peptide, and documented IAH and SHEs despite expert care were enrolled. Each received immunosuppression and one or more transplants of PHPI, manufactured on-site under good manufacturing practice conditions using a common batch record and standardized lot release criteria and test methods. The primary end point was the achievement of HbA1c <7.0% (53 mmol/mol) at day 365 and freedom from SHEs from day 28 to day 365 after the first transplant.RESULTSThe primary end point was successfully met by 87.5% of subjects at 1 year and by 71% at 2 years. The median HbA1c level was 5.6% (38 mmol/mol) at both 1 and 2 years. Hypoglycemia awareness was restored, with highly significant improvements in Clarke and HYPO scores (P > 0.0001). No study-related deaths or disabilities occurred. Five of the enrollees (10.4%) experienced bleeds requiring transfusions (corresponding to 5 of 75 procedures), and two enrollees (4.1%) had infections attributed to immunosuppression. Glomerular filtration rate decreased significantly on immunosuppression, and donor-specific antibodies developed in two patients.CONCLUSIONSTransplanted PHPI provided glycemic control, restoration of hypoglycemia awareness, and protection from SHEs in subjects with intractable IAH and SHEs. Safety events occurred related to the infusion procedure and immunosuppression, including bleeding and decreased renal function. Islet transplantation should be considered for patients with T1D and IAH in whom other, less invasive current treatments have been ineffective in preventing SHEs.
After over a decade of discussion, analysis, and consensus-building, a new kidney allocation system (KAS) was implemented on December 4, 2014. Key goals included improving longevity matching between donor kidneys and recipients and broadening access for historically disadvantaged subpopulations, in particular highly sensitized patients and those with an extended duration on dialysis but delayed referral for transplantation. To evaluate the early impact of KAS, we compared Organ Procurement and Transplantation Network data 1 year before versus after implementation. The distribution of transplants across many recipient characteristics has changed markedly and suggests that in many ways the new policy is achieving its goals. Transplants in which the donor and recipient age differed by more than 30 years declined by 23%. Initial, sharp increases in transplants were observed for Calculated Panel-Reactive Antibody 99-100% recipients and recipients with at least 10 years on dialysis, with a subsequent tapering of transplants to these groups suggesting bolus effects. Although KAS has arguably increased fairness in allocation, the potential costs of broadening access must be considered. Kidneys are more often being shipped over long distances, leading to increased cold ischemic times. Delayed graft function rates have increased, but 6-month graft survival rates have not changed significantly.
Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed.
Treatment of mice with a single donor-specific transfusion plus a brief course of anti-CD154 mAb uniformly induces donor-specific transplantation tolerance characterized by the deletion of alloreactive CD8+ T cells. Survival of islet allografts in treated mice is permanent, but skin grafts eventually fail unless recipients are thymectomized. To analyze the mechanisms underlying tolerance induction, maintenance, and failure in euthymic mice we created a new analytical system based on allo-TCR-transgenic hemopoietic chimeric graft recipients. Chimeras were CBA (H-2k) mice engrafted with small numbers of syngeneic TCR-transgenic KB5 bone marrow cells. These mice subsequently circulated a self-renewing trace population of anti-H-2b-alloreactive CD8+ T cells maturing in a normal microenvironment. With this system, we studied the maintenance of H-2b allografts in tolerized mice. We documented that alloreactive CD8+ T cells deleted during tolerance induction slowly returned toward pretreatment levels. Skin allograft rejection in this system occurred in the context of 1) increasing numbers of alloreactive CD8+ cells; 2) a decline in anti-CD154 mAb concentration to levels too low to inhibit costimulatory functions; and 3) activation of the alloreactive CD8+ T cells during graft rejection following deliberate depletion of regulatory CD4+ T cells. Rejection of healed-in allografts in tolerized mice appears to be a dynamic process dependent on the level of residual costimulation blockade, CD4+ regulatory cells, and activated alloreactive CD8+ thymic emigrants that have repopulated the periphery after tolerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.