The rare 6-deoxysugar d-rhamnose is a component of bacterial cell surface glycans, including the d-rhamnose homopolymer produced by Pseudomonas aeruginosa, called A-band O polysaccharide. GDP-d-rhamnose synthesis from GDP-d-mannose is catalyzed by two enzymes. The first is a GDP-d-mannose-4,6-dehydratase (GMD). The second enzyme, RMD, reduces the GMD product (GDP-6-deoxy-d-lyxo-hexos-4-ulose) to GDP-d-rhamnose. Genes encoding GMD and RMD are present in P. aeruginosa, and genetic evidence indicates they act in A-band O-polysaccharide biosynthesis. Details of their enzyme functions have not, however, been previously elucidated. We aimed to characterize these enzymes biochemically, and to determine the structure of RMD to better understand what determines substrate specificity and catalytic activity in these enzymes. We used capillary electrophoresis and NMR analysis of reaction products to precisely define P. aeruginosa GMD and RMD functions. P. aeruginosa GMD is bifunctional, and can catalyze both GDP-d-mannose 4,6-dehydration and the subsequent reduction reaction to produce GDP-d-rhamnose. RMD catalyzes the stereospecific reduction of GDP-6-deoxy-d-lyxo-hexos-4-ulose, as predicted. Reconstitution of GDP-d-rhamnose biosynthesis in vitro revealed that the P. aeruginosa pathway may be regulated by feedback inhibition in the cell. We determined the structure of RMD from Aneurinibacillus thermoaerophilus at 1.8 Å resolution. The structure of A. thermoaerophilus RMD is remarkably similar to that of P. aeruginosa GMD, which explains why P. aeruginosa GMD is also able to catalyze the RMD reaction. Comparison of the active sites and amino acid sequences suggests that a conserved amino acid side chain (Arg185 in P. aeruginosa GMD) may be crucial for orienting substrate and cofactor in GMD enzymes.
D-Rhamnose is a rare 6-deoxy monosaccharide primarily found in the lipopolysaccharide of pathogenic bacteria, where it is involved in host-bacterium interactions and the establishment of infection. The biosynthesis of D-rhamnose proceeds through the conversion of GDP-D-mannose by GDP-D-mannose 4,6-dehydratase (GMD) to GDP-4-keto-6-deoxymannose, which is subsequently reduced to GDP-D-rhamnose by a reductase. We have determined the crystal structure of GMD from Pseudomonas aeruginosa in complex with NADPH and GDP. GMD belongs to the NDP-sugar modifying subfamily of the short-chain dehydrogenase/reductase (SDR) enzymes, all of which exhibit bidomain structures and a conserved catalytic triad (Tyr-XXX-Lys and Ser/Thr). Although most members of this enzyme subfamily display homodimeric structures, this bacterial GMD forms a tetramer in the same fashion as the plant MUR1 from Arabidopsis thaliana. The cofactor binding sites are adjoined across the tetramer interface, which brings the adenosyl phosphate moieties of the adjacent NADPH molecules to within 7 Å of each other. A short peptide segment (Arg35-Arg43) stretches into the neighboring monomer, making not only protein-protein interactions but also hydrogen bonding interactions with the neighboring cofactor. The interface hydrogen bonds made by the Arg35-Arg43 segment are generally conserved in GMD and MUR1, and the interacting residues are highly conserved among the sequences of bacterial and eukaryotic GMDs. Outside of the Arg35-Arg43 segment, residues involved in tetrameric contacts are also quite conserved across different species. These observations suggest that a tetramer is the preferred, and perhaps functionally relevant, oligomeric state for most bacterial and eukaryotic GMDs.
The anti-apoptosis protein, survivin, promotes cell survival and mitosis. Recent studies have demonstrated that survivin is expressed in normal gastric mucosa. Using an in vitro model, we examined whether survivin plays a role in the cytoprotection produced in gastric mucosa by mild irritant ethanol (ETOH) against subsequent exposure to concentrated ETOH. Pre-treatment of rat gastric epithelial cells with 1% ETOH reduced cell death, in response to subsequent incubation with 5% ETOH, by 94% (P < 0.005). This pre-treatment also resulted in increased total and phosphorylated survivin protein levels by 180% (P < 0.0001) and 540% (P < 0.0002), respectively, which required the p34(cdc2) cell cycle-dependent kinase. The cytoprotective effect was abrogated upon siRNA knockdown of survivin protein levels. Further, overexpression of exogenous survivin resulted in significant cytoprotection by 62% (P < 0.02) in the absence of any pre-treatment. We further examined the in vivo relevance of these findings. In fasted rats, administration of 20% ETOH, which we found to be 93% (P < 0.0001) cytoprotective against 50% ETOH challenge, resulted in increased total and phosphorylated survivin protein levels by 234% (P < 0.001) and 214% (P < 0.02), respectively. Administration of 20% ETOH resulted in increased gastric p34(cdc2) activity by 146% (P < 0.01). Inhibition of p34(cdc2) by the potent inhibitor, roscovitine, abolished the increased survivin levels in response to pre-administration of 20% ETOH and reduced the cytoprotection against 50% ETOH challenge by 59% (P < 0.01). These results indicate that survivin is a key mediator of cytoprotection against ETOH-induced gastric injury, acting at the epithelial cell level, by a mechanism that is dependent, in part, on p34(cdc2).
We are addressing bacterial resistance to antibiotics by repurposing a well-established classic antimicrobial target, the dihydrofolate reductase (DHFR) enzyme. In this work, we have focused on Enterococcus faecalis, a nosocomial pathogen that frequently harbors antibiotic resistance determinants leading to complicated and difficult-to-treat infections. An inhibitor series with a hydrophobic dihydrophthalazine heterocycle was designed from the anti-folate trimethoprim. We have examined the potency of this inhibitor series based on inhibition of DHFR enzyme activity and bacterial growth, including in the presence of the exogenous product analogue folinic acid. The resulting preferences were rationalized using a cocrystal structure of the DHFR from this organism with a propyl-bearing series member (RAB-propyl). In a companion apo structure, we identify four buried waters that act as placeholders for a conserved hydrogen-bonding network to the substrate and indicate an important role in protein stability during catalytic cycling. In these structures, the nicotinamide of the nicotinamide adenine dinucleotide phosphate cofactor is visualized outside of its binding pocket, which is exacerbated by RAB-propyl binding. Finally, homology models of the TMPR sequences dfrK and dfrF were constructed. While the dfrK-encoded protein shows clear sequence changes that would be detrimental to inhibitor binding, the dfrF-encoded protein model suggests the protein would be relatively unstable. These data suggest a utility for anti-DHFR compounds for treating infections arising from E. faecalis. They also highlight a role for water in stabilizing the DHFR substrate pocket and for competitive substrate inhibitors that may gain advantages in potency by the perturbation of cofactor dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.