Graft-versus-host disease (GVHD) is a life-threatening complication following donor hematopoietic stem cell transplantation, where donor T cells damage host tissues. This study investigated the effect of tocilizumab (TOC) combined with post-transplant cyclophosphamide (PTCy) on immune cell engraftment and GVHD development in a humanized mouse model. NOD-scid-IL2Rc null (NSG) mice were injected intraperitoneally with 2 9 10 7 human (h) peripheral blood mononuclear cells and cyclophosphamide (33 mg kg À1 ) or saline on days 3 and 4, then TOC or control antibody (0.5 mg mouse À1 ) twice weekly for 28 days. Mice were monitored for clinical signs of GVHD for either 28 or 70 days. Spleens and livers were assessed for human leukocyte subsets, and serum cytokines and tissue histology were analyzed. In the short-term model (day 28), liver and lung damage were reduced in PTCy + TOC compared with control mice. All groups showed similar splenic hCD45 + leukocyte engraftment (55-60%); however, PTCy + TOC mice demonstrated significantly increased (1.5-2-fold) splenic regulatory T cells. Serum human interferon gamma was significantly reduced in PTCy + TOC compared with control mice. Long-term (day 70), prolonged survival was similar in PTCy + TOC (median survival time, > 70 days) and PTCy mice (median survival time, 56 days). GVHD onset was significantly delayed in PTCy + TOC, compared with TOC or control mice. Notably, natural killer cells were reduced (77.5%) in TOC and PTCy + TOC mice. Overall, combining PTCy with TOC increases regulatory T cells and reduces clinical signs of early GVHD, but does not improve long-term survival compared with PTCy alone.
Purinergic receptors of the P2 subclass are commonly found in human and rodent macrophages where they can be activated by adenosine 5′-triphosphate (ATP) or uridine 5′-triphosphate (UTP) to mediate Ca2+ mobilization, resulting in downstream signalling to promote inflammation and pain. However, little is understood regarding these receptors in canine macrophages. To establish a macrophage model of canine P2 receptor signalling, the expression of these receptors in the DH82 canine macrophage cell line was determined by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. P2 receptor function in DH82 cells was pharmacologically characterised using nucleotide-induced measurements of Fura-2 AM-bound intracellular Ca2+. RT-PCR revealed predominant expression of P2X4 receptors, while immunocytochemistry confirmed predominant expression of P2Y2 receptors, with low levels of P2X4 receptor expression. ATP and UTP induced robust Ca2+ responses in the absence or presence of extracellular Ca2+. ATP-induced responses were only partially inhibited by the P2X4 receptor antagonists, 2′,3′-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP), paroxetine and 5-BDBD, but were strongly potentiated by ivermectin. UTP-induced responses were near completely inhibited by the P2Y2 receptor antagonists, suramin and AR-C118925. P2Y2 receptor-mediated Ca2+ mobilization was inhibited by U-73122 and 2-aminoethoxydiphenyl borate (2-APB), indicating P2Y2 receptor coupling to the phospholipase C and inositol triphosphate signal transduction pathway. Together this data demonstrates, for the first time, the expression of functional P2 receptors in DH82 canine macrophage cells and identifies a potential cell model for studying macrophage-mediated purinergic signalling in inflammation and pain in dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.