Aiolos encodes a zinc finger DNA-binding protein that is highly expressed in mature B cells and is homologous to Ikaros. In the periphery of mice homozygous for an Aiolos-null mutation, B cells exhibit an activated cell surface phenotype and undergo augmented antigen receptor (BCR)-mediated in vitro proliferative responses, even at limiting amounts of stimulant. In vivo, T cell-dependent B cell responses, including the formation of germinal centers and elevated serum IgG and IgE, are detected in Aiolos-deficient mice in the absence of immunization. Auto-antibodies and development of B cell lymphomas are frequently seen among aging Aiolos mutants. In sharp contrast to conventional B cells, B cells of the peritoneum, of the marginal zone, and the recirculating bone marrow population are greatly reduced.
Distinct but overlapping expression patterns of members of the Ikaros gene family during hematopoiesis might result in the formation of different multimeric complexes that have specific roles in lineage progression. The preferential expression of Helios in the earliest stages of hematopoiesis suggests that this gene functions predominantly in early progenitors.
The Ikaros gene, which encodes a family of hemopoietic-specific zinc finger proteins, is described as a central regulator of lymphocyte differentiation. During fetal development, it is required at the earliest stage of T cell and B cell specification. In the adult, however, lymphoid lineages rely on Ikaros at distinct phases of their development. Its activity is essential for the generation of B cell but not of T cell precursors, although the differentiation of the latter is not normal. A significant increase in CD4 thymocytes and their immediate precursors is detected, and because these cells lack markers that correlate with positive selection, a deregulation in their maturation process is suggested. Furthermore, Ikaros-null thymocytes hyperproliferate in response to T cell receptor (TCR) signaling; within days after their appearance in the thymus, clonally expanding populations are detected. Deregulated TCR-mediated responses and the fast kinetics of tumor development in these mutant thymocytes implicate Ikaros as a central tumor suppressor gene for the T cell lineage. In addition, lack of natural killer cells and selective defects in gamma delta T cells and dendritic antigen-presenting cells point to Ikaros as an essential factor for the establishment of early branchpoints of the T cell pathway. The dominant interference activity of Ikaros isoforms unable to bind DNA and their effects in lymphocyte development suggest that Ikaros works in concert with other factors. The role of Aiolos, a lymphoid-restricted and structurally related gene, in lymphoid differentiation is discussed. A model is proposed that defines Ikaros as the backbone of a complex regulatory protein network that controls cell fate decisions and regulates homeostasis in the hemo-lymphoid system. Changes in this regulatory network may reflect differentiation and proliferation adjustments made in hemo-lymphoid progenitors and precursors as they give rise to the cells of our immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.