Background: Immunotherapy has so far had limited success in colorectal cancer (CRC), with its efficacy restricted to a subset of microsatellite instability high (MSI-H) tumors. A comprehensive interrogation of the CRC tumor immune microenvironment (TME) is urgently needed. We present here an ongoing multi-platform study on early stage colon and rectal cancers, where immuno-genomic profiling of tumors and patient-derived cell models of tumor epithelia, cancer-associated fibroblasts and tumor-infiltrating lymphocytes (TIL) complement each other, with opportunities for mutual cross-validation between experimental and bioprofiling data.
Methods: At the time of writing, 21 of a planned 50 early stage CRC patients have been recruited. Surgically resected tumors are processed for 4 broad classes of analyses: 1) Bulk tissue profiling by RNA and whole exome sequencing; 2) High resolution protein and transcriptome analysis comprising scRNA-seq and flow cytometry/CyToF; 3) H&E analysis and multiplex immunohistochemistry for TME-specific proteins; 4) Culture of epithelial, fibroblast, and TIL lines, and generation of patient-derived xenografts for functional studies.
Results: Four tumors were MSI-H and 17 were microsatellite stable (MSS), with 1 POLE-mutant MSS patient harboring over 6000 mutations. Bulk genomics analysis revealed the most common mutations to be in TP53, APC, MUC17, and TGFBR2. The most frequently altered pathways were WNT, followed in order by p53, TGFβ, PI3K, and RAS-MAPK. scRNA-seq and flow cytometry/CyToF analyses are being performed to examine immune phenotypes, mediators of cell migration, and immune suppressive populations, which complement data on transcriptomic profile, histopathology, and spatial localization of TME cellular components. Of the 3 cultured cell types, 16 patients have lines of at least one cell compartment established in vitro. Characteristics of individual models will be reported at the meeting. Establishing the 3 cultured cell types from the same patient will enable us to develop an autologous patient-derived co-culture system to evaluate all 3 pairwise interactions, including TIL cytotoxicity toward epithelial cells, mutual modulation by fibroblast and epithelial cells in co-culture and their phenotypic alterations, and fibroblast regulation of TIL cytotoxic function. Autologous co-cultures with all 3 cell types are also planned.
Conclusions: The generation of well-annotated multi-platform profiling data from CRC tumors, complemented by matched tri-compartment patient-derived cell cultures, enables mutual cross-validation between experimental models of the TME and bioprofiling data.
Citation Format: Lindsay H. Kua, Fiona Y. Lee, Christine L. Eng, Harini Srinivasan, Rahul Nahar, Janice H. Oh, Nicole Ann L. Gunn, Kai Xian Thng, Ashley S. Yong, Adrian C. Sim, Rebecca Lim, Nicole Boo, Simeen Malik, Michael T. Wong, Tze Guan Tan, Shu Wen S. Ho, Shirleen Soh, Wan Jun Lim, Macalinao Dominique Camat, Joe P. Yeong, Clarinda W. Chua, Wei Qiang Leow, Ramanuj DasGupta, Si-Lin Koo, Lewis Hong, Brian Henry, Tony K. Lim, Iain B. Tan. Tri-compartment (epithelial, immune, fibroblast) patient-derived models of the tumor microenvironment from an immuno-genomic profiled cohort of early stage colorectal cancers [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 3990.