We report a novel group of clinically aggressive spinal cord ependymomas characterized by Grade III histology, MYCN amplification, an absence of NF2 alterations or other recurrent pathogenic mutations, and a unique methylation classifier profile. Seven cases were found to have MYCN amplification in the course of routine mutational profiling of 552 patients with central nervous system tumors between December 2016 and July of 2019 and an eighth patient was identified from an unrelated set of cases. Methylation array analysis revealed that none of the 8 cases clustered with any of the nine previously described ependymoma methylation subgroups, and 7 of 8 formed their own tight unique cluster. Histologically all cases showed grade III features, and all demonstrated aggressive clinical behavior. These findings are presented in the context of data from three other studies describing similar cases. Therefore, a combined total of 27 MYCN amplified spinal cord ependymoma cases have now been reported in the literature, warranting their consideration as a distinctive subtype of spinal cord ependymoma (SP-EPN-MYCN) with their unique molecular characteristics and aggressive clinical behavior.
The progressive loss of midbrain (MB) dopaminergic (DA) neurons defines the motor features of Parkinson disease (PD), and modulation of risk by common variants in PD has been well established through genome-wide association studies (GWASs). We acquired open chromatin signatures of purified embryonic mouse MB DA neurons because we anticipated that a fraction of PD-associated genetic variation might mediate the variants' effects within this neuronal population. Correlation with >2,300 putative enhancers assayed in mice revealed enrichment for MB cis-regulatory elements (CREs), and these data were reinforced by transgenic analyses of six additional sequences in zebrafish and mice. One CRE, within intron 4 of the familial PD gene SNCA, directed reporter expression in catecholaminergic neurons from transgenic mice and zebrafish. Sequencing of this CRE in 986 individuals with PD and 992 controls revealed two common variants associated with elevated PD risk. To assess potential mechanisms of action, we screened >16,000 proteins for DNA binding capacity and identified a subset whose binding is impacted by these enhancer variants. Additional genotyping across the SNCA locus identified a single PD-associated haplotype, containing the minor alleles of both of the aforementioned PD-risk variants. Our work posits a model for how common variation at SNCA might modulate PD risk and highlights the value of cell-context-dependent guided searches for functional non-coding variation.
Circadian clock genes have been linked to clinical outcomes in cancer, including gliomas. However, these studies have not accounted for established markers that predict the prognosis, including mutations in Isocitrate Dehydrogenase (IDH), which characterize the majority of lower-grade gliomas and secondary high-grade gliomas. To demonstrate the connection between circadian clock genes and glioma outcomes while accounting for the IDH mutational status, we analyzed multiple publicly available gene expression datasets. The unsupervised clustering of 13 clock gene transcriptomic signatures from The Cancer Genome Atlas showed distinct molecular subtypes representing different disease states and showed the differential prognosis of these groups by a Kaplan–Meier analysis. Further analyses of these groups showed that a low period (PER) gene expression was associated with the negative prognosis and enrichment of the immune signaling pathways. These findings prompted the exploration of the relationship between the microenvironment and clock genes in additional datasets. Circadian clock gene expression was found to be differentially expressed across the anatomical tumor location and cell type. Thus, the circadian clock expression is a potential predictive biomarker in glioma, and further mechanistic studies to elucidate the connections between the circadian clock and microenvironment are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.