Overall there is only moderate agreement on tumor grade between preoperative endometrial sampling and final diagnosis with the lowest agreement for grade 2 carcinomas.
Background:Identification of aggressive endometrioid endometrial carcinomas (EECs) and non-endometrioid carcinomas (NEECs) is essential to improve outcome. L1 cell adhesion molecule (L1CAM) expression is a strong prognostic marker in stage I EECs, but less is known about L1CAM expression in advanced-stage EECs and NEECs. This study analyses L1CAM expression in a clinically representative cohort of endometrial carcinomas.Methods:The expression of L1CAM was immunohistochemically determined in 1199 endometrial carcinomas, treated at one of the European Network for Individualized Treatment of Endometrial Cancer (ENITEC) centres. Staining was considered positive when >10% of the tumour cells expressed L1CAM. The association between L1CAM expression and several clincopathological characteristics and disease outcome was calculated.Results:In all, L1CAM was expressed in 10% of the 935 stage I EECs, 18% of the 160 advanced stage EECs, and 75% of the 104 NEECs. The expression of L1CAM was associated with advanced stage, nodal involvement, high tumour grade, non-endometrioid histology, lymphovascular space invasion, and distant recurrences in all cases, and with reduced survival in the EECs, but not in the NEECs.Conclusions:The expression of L1CAM is a strong predictor of poor outcome in EECs, but not NEECs. It is strongly associated with non-endometrioid histology and distant spread, and could improve the postoperative selection of high-risk endometrial carcinomas. The value of L1CAM expression in the preoperative selection of high-risk endometrial carcinomas should be studied.
Loss of ER and PR, and the presence of L1CAM are associated with high risk characteristics, and loss of PR is the strongest predictor of recurrent disease. Although a combination of these 3 markers is slightly superior to the traditional histological markers, a prognostic model including stage, PR expression, and LVSI is the most promising model in the identification of high risk carcinomas. In the stage I endometrioid carcinomas, PR immunohistochemistry appears to be of additional value in predicting recurrences.
In women with postmenopausal bleeding, the failure rate of endometrial sampling is relatively high and is associated with nulliparity and advanced age. Endometrial thickness >12 mm decreased the chance of failure. A multivariable prediction model for total failure based on patient characteristics has a moderate capacity to discriminate between women at high or low risk of failure.
BackgroundOrthotopic endometrial cancer models provide a unique tool for studies of tumour growth and metastatic spread. Novel preclinical imaging methods also have the potential to quantify functional tumour characteristics in vivo, with potential relevance for monitoring response to therapy.MethodsAfter orthotopic injection with luc-expressing endometrial cancer cells, eleven mice developed disease detected by weekly bioluminescence imaging (BLI). In parallel the same mice underwent positron emission tomography–computed tomography (PET-CT) and magnetic resonance imaging (MRI) employing 18F-fluorodeoxyglocose (18F-FDG) or 18F- fluorothymidine (18F-FLT) and contrast reagent, respectively. The mice were sacrificed when moribund, and post-mortem examination included macroscopic and microscopic examination for validation of growth of primary uterine tumours and metastases. PET-CT was also performed on a patient derived model (PDX) generated from a patient with grade 3 endometrioid endometrial cancer.ResultsIncreased BLI signal during tumour growth was accompanied by increasing metabolic tumour volume (MTV) and increasing MTV x mean standard uptake value of the tumour (SUVmean) in 18F-FDG and 18F-FLT PET-CT, and MRI conspicuously depicted the uterine tumour. At necropsy 82% (9/11) of the mice developed metastases detected by the applied imaging methods. 18F-FDG PET proved to be a good imaging method for detection of patient derived tumour tissue.ConclusionsWe demonstrate that all imaging modalities enable monitoring of tumour growth and metastatic spread in an orthotopic mouse model of endometrial carcinoma. Both PET tracers, 18F-FDG and 18F-FLT, appear to be equally feasible for detecting tumour development and represent, together with MRI, promising imaging tools for monitoring of patient-derived xenograft (PDX) cancer models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.