Large-scale expansions of DNA repeats are implicated in numerous hereditary disorders in humans. We describe a yeast experimental system to analyze large-scale expansions of triplet GAA repeats, responsible for the human disease Friedreich’s ataxia. When GAA repeats were placed into an intron of the chimeric URA3 gene, their expansions caused gene inactivation, which was detected on the selective media. We found that the rates of expansions of GAA repeats increased exponentially with their lengths. These rates were only mildly dependent on the repeat’s orientation within the replicon, whereas the repeat-mediated replication fork stalling was exquisitely orientation-dependent. Expansion rates were significantly elevated upon inactivation of the replication fork stabilizers, Tof1 and Csm3, but decreased in the mutants of postreplication DNA repair proteins, Rad6 and Rad5, and the DNA helicase Sgs1. We propose a model for large-scale repeat expansions based on the template switching during the replication fork progression through repetitive DNA.
Spinocerebellar ataxia 10 (SCA10) is an autosomal dominant disease caused by large-scale expansions of the (ATTCT) n repeat within an intron of the human ATXN10 gene. In contrast to other expandable repeats, this pentanucleotide repeat does not form stable intra-or interstranded DNA structures, being a DNA unwinding element instead. We analyzed the instability of the (ATTCT) n repeat in a yeast experimental system, where its expansions led to inactivation of the URA3 reporter gene. The inactivation was due to a dramatic decrease in the mRNA levels owing to premature transcription termination and RNA polyadenylation at the repeat. The rates of expansions strongly increased with the repeat's length, mimicking genetic anticipation in human pedigrees. A first round of genetic analysis showed that a functional TOF1 gene precludes, whereas a functional RAD5 gene promotes, expansions of the (ATTCT) n repeat. We hypothesize that repeat expansions could occur upon fortuitous template switching during DNA replication. The rate of repeat contractions was elevated in the Tof1 knockout strain, but it was not affected by the RAD5 gene. Supporting the notion of replication irregularities, we found that (ATTCT) n repeats also cause length-dependent chromosomal fragility in yeast. Repeat-mediated fragility was also affected by the Tof1 and Rad5 proteins, being reduced in their absence.DNA repeats | genome instability | DNA repair
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.