Marine animals forage in areas that aggregate prey to maximize their energy intake. However, these foraging 'hot spots' experience environmental variability, which can substantially alter prey availability. To survive and reproduce animals need to modify their foraging in response to these prey shifts. By monitoring their inter-annual foraging behaviours, we can understand which environmental variables affect their foraging efficiency, and can assess how they respond to environmental variability. Here, we monitored the foraging behaviour and isotopic niche of little penguins (Eudyptula minor), over 3 years (2008, 2011, and 2012) of climatic and prey variability within Port Phillip Bay, Australia. During drought (2008), penguins foraged in close proximity to the Yarra River outlet on a predominantly anchovy-based diet. In periods of heavy rainfall, when water depth in the largest tributary into the bay (Yarra River) was high, the total distance travelled, maximum distance travelled, distance to core-range, and size of core- and home-ranges of penguins increased significantly. This larger foraging range was associated with broad dietary diversity and high reproductive success. These results suggest the increased foraging range and dietary diversity of penguins were a means to maximize resource acquisition rather than a strategy to overcome local depletions in prey. Our results demonstrate the significance of the Yarra River in structuring predator-prey interactions in this enclosed bay, as well as the flexible foraging strategies of penguins in response to environmental variability. This plasticity is central to the survival of this small-ranging, resident seabird species.
Summary1. Diet-related breeding failure in seabirds has been attributed to declines in key prey abundance, the quality of prey and overall prey availability. However, identifying which aspect of diet is responsible for reproductive failure is challenging due to the practicalities of measuring prey utilization and the actual availability and abundance of those resources. 2. In this study, stable isotope-based Bayesian models, in combination with indices of resource availability, were used to assess the links between prey availability, seabird diet and reproductive success in a generalist, inshore top predator, the little penguin, Eudyptula minor. 3. The most probable causes for the sharp decrease in little penguin reproductive performance were diminished localized populations of anchovies, Engraulis australis, in combination with the scarcity of alternative prey. Low dietary diversity and the consumption of low trophic value prey were observed in this period. In the contrasting following year, penguins consumed increased levels of anchovy as well as a high diversity of prey. High dietary diversity and the consumption of high trophic value prey were observed in birds' pre-breeding and breeding diet and likely led to early breeding and high reproductive success. 4. Our results highlight that resource abundance and the availability of a variety of prey taxa are critical factors in enabling this inshore seabird to adjust to changes in environmental conditions and fluctuations in prey.5. An understanding of seabird diet is integral to their conservation and management. Monitoring seabird trophic niche dimensions and reproductive parameters can elucidate causes for population declines and can provide information about particular prey species and foraging locations that require protection.
Unlike migratory seabirds with wide foraging ranges, resident seabirds forage in a relatively small range year-round and are thus particularly vulnerable to local shifts in prey availability. In order to manage their populations effectively, it is necessary to identify their key prey across and within years. Here, stomach content and stable isotope analyses were used to reconstruct the diet and isotopic niche of the little penguin (Eudyptula minor). Across years, the diet of penguins was dominated by anchovy (Engraulis australis). Within years, during winter, penguins were consistently enriched in δ15N and δ13C levels relative to pre-moult penguins. This was probably due to their increased reliance on juvenile anchovies, which dominate prey biomass in winter months. Following winter and during breeding, the δ13C values of penguins declined. We suggest this subtle shift was in response to the increased consumption of prey that enter the bay from offshore regions to spawn. Our findings highlight that penguins have access to both juvenile fish communities and spawning migrants across the year, enabling these seabirds to remain in close proximity to their colony. However, annual fluctuations in penguin isotopic niche suggest that the recruitment success and abundance of fish communities fluctuate dramatically between years. As such, the continued monitoring of penguin diet will be central to their ongoing management.
The distribution of predators relative to specific abiotic and biotic factors within estuarine plume fronts is largely unexplored due to the lack of fine-scale temporal and spatial oceanographic data. Defining preferred foraging conditions of seabirds in these areas is critical to identifying important foraging habitats. Here, we use data obtained from Ships of Opportunity to improve the way we quantify oceanographic conditions at scales that match marine animal foraging activities within these areas. Using biologgers and data from a Ship of Opportunity, we assessed the fine-scale habitat utilization of the Little Penguin (Eudyptula minor) within an estuarine plume in Victoria, Australia. We assessed how environmental conditions within the home-range (transit and foraging) and core-range (subset area of intensive foraging within the home-range) of this inshore seabird differed to environmental conditions in the accessible, but non-utilized range (i.e., non-foraging range). Penguin foraging ranges occurred in waters with higher Chl-a, turbidity, temperature and lower salinity than non-foraging ranges. High Chl-a biomass was the most important explanatory variable of penguin distribution. Environmental conditions between the core-range and less used home-range also differed. Waters in the core-range were less productive, less turbid and less dynamic. We suggest penguins are foraging in these core-ranges due to the productive yet stable environmental conditions that likely offer a higher degree of prey predictability than the fluctuating conditions in the wider home-range. Furthermore, penguins may spend a greater proportion of their time in core-ranges as these waters have relatively low turbidity and may improve the ability of penguins to detect and capture their prey. Our results highlight the ability of a small-ranging, visual predator to selectively forage in waters with favorable conditions at fine-scales as a potential means to improve foraging efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.