Injectable sensors can significantly improve the volume of critical biomedical information emerging from the human body in response to injury or disease. Optical oxygen sensors with rapid response times can be achieved by incorporating oxygen-sensitive luminescent molecules within polymeric matrices with suitably high surface area to volume ratios. In this work, electrospraying utilizes these advances to produce conveniently injectable, oxygen sensing particles made up of a core-shell polysulfone-polysulfone structure containing a phosphorescent oxygen-sensitive palladium porphyrin species within the core. Particle morphology is highly dependent on solvent identity and electrospraying parameters; DMF offers the best potential for the creation of uniform, sub-micron particles. Total internal reflection fluorescence microscopy confirms the existence of both core-shell structure and oxygen sensitivity. The dissolved oxygen response time is rapid (<0.30 s), ideal for continuous real-time monitoring of oxygen concentration. The incorporation of Pluronic F-127 surfactant enables efficient dispersion; selection of an appropriate electrospraying solvent (DMF) yields particles readily injected even through a < 100 μm diameter needle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.