Lactobacillus brevis is the most significant beer spoilage bacteria worldwide. It is found as a contaminant at all stages of brewing, including during primary and secondary fermentation, storage, filtration and the packaging process. In production with flash pasteurisation and subsequent hygienic filling, avoiding and tracing secondary contaminations is the key to a microbiologically stable product. However, L. brevis strains vary in their spoilage potential and can grow in many different beer types. This study presents a physiological test scheme for growth potential and biofilm formation in various media. It was determined that a large number of L. brevis strains can form biofilms as a first coloniser. The identification of the species alone is therefore not enough to be sure of the spoilage risk, which shows the need for a more in depth differentiation. DNA fingerprint techniques are crucial to differentiate isolates of this species at strain level. The rep-PCR fingerprint system (GTG) 5 was used to differentiate a selected collection of 20 isolates, which were characterised in growth and biofilm formation in various media. The data showed a high variation within the selected isolates. As second step, generated fingerprint clusters of L. brevis were traced back to contamination sources in a German brewery, revealing a high number of isolates with potentially varying growth, spoilage and biofilm potential. L. brevis being the demonstrator species, the PCR system used is a powerful and compatible tracing and troubleshooting tool for all kinds of spoilage bacteria in the brewing industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.