Accurate and fast assessment of resection margins is an essential part of a dermatopathologist’s clinical routine. In this work, we successfully develop a deep learning method to assist the dermatopathologists by marking critical regions that have a high probability of exhibiting pathological features in whole slide images (WSI). We focus on detecting basal cell carcinoma (BCC) through semantic segmentation using several models based on the UNet architecture. The study includes 650 WSI with 3443 tissue sections in total. Two clinical dermatopathologists annotated the data, marking tumor tissues’ exact location on 100 WSI. The rest of the data, with ground-truth sectionwise labels, are used to further validate and test the models. We analyze two different encoders for the first part of the UNet network and two additional training strategies: (a) deep supervision, (b) linear combination of decoder outputs, and obtain some interpretations about what the network’s decoder does in each case. The best model achieves over 96%, accuracy, sensitivity, and specificity on the Test set.
Background: Some of the most common cutaneous neoplasms are Bowen’s disease and seborrheic keratosis, a malignant and a benign proliferation, respectively. These entities represent a significant fraction of a dermatopathologists’ workload, and in some cases, histological differentiation may be challenging. The potential of deep learning networks to distinguish these diseases is assessed. Methods: In total, 1935 whole-slide images from three institutions were scanned on two different slide scanners. A U-Net-based segmentation deep learning algorithm was trained on data from one of the centers to differentiate Bowen’s disease, seborrheic keratosis, and normal tissue, learning from annotations performed by dermatopathologists. Optimal thresholds for the class distinction of diagnoses were extracted and assessed on a test set with data from all three institutions. Results: We aimed to diagnose Bowen’s diseases with the highest sensitivity. A good performance was observed across all three centers, underlining the model’s robustness. In one of the centers, the distinction between Bowen’s disease and all other diagnoses was achieved with an AUC of 0.9858 and a sensitivity of 0.9511. Seborrheic keratosis was detected with an AUC of 0.9764 and a sensitivity of 0.9394. Nevertheless, distinguishing irritated seborrheic keratosis from Bowen’s disease remained challenging. Conclusions: Bowen’s disease and seborrheic keratosis could be correctly identified by the evaluated deep learning model on test sets from three different centers, two of which were not involved in training, and AUC scores > 0.97 were obtained. The method proved robust to changes in the staining solution and scanner model. We believe this demonstrates that deep learning algorithms can aid in clinical routine; however, the results should be confirmed by qualified histopathologists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.